2,310 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem

    Get PDF
    AbstractDial-a-ride problems deal with the transportation of people between pickup and delivery locations. Given the fact that people are subject to transportation, constraints related to quality of service are usually present, such as time windows and maximum user ride time limits. In many real world applications, different types of users exist. In the field of patient and disabled people transportation, up to four different transportation modes can be distinguished. In this article we consider staff seats, patient seats, stretchers and wheelchair places. Furthermore, most companies involved in the transportation of the disabled or ill dispose of different types of vehicles. We introduce both aspects into state-of-the-art formulations and branch-and-cut algorithms for the standard dial-a-ride problem. Also a recent metaheuristic method is adapted to this new problem. In addition, a further service quality related issue is analyzed: vehicle waiting time with passengers aboard. Instances with up to 40 requests are solved to optimality. High quality solutions are obtained with the heuristic method

    A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers

    Full text link
    We propose a ridesharing strategy with integrated transit in which a private on-demand mobility service operator may drop off a passenger directly door-to-door, commit to dropping them at a transit station or picking up from a transit station, or to both pickup and drop off at two different stations with different vehicles. We study the effectiveness of online solution algorithms for this proposed strategy. Queueing-theoretic vehicle dispatch and idle vehicle relocation algorithms are customized for the problem. Several experiments are conducted first with a synthetic instance to design and test the effectiveness of this integrated solution method, the influence of different model parameters, and measure the benefit of such cooperation. Results suggest that rideshare vehicle travel time can drop by 40-60% consistently while passenger journey times can be reduced by 50-60% when demand is high. A case study of Long Island commuters to New York City (NYC) suggests having the proposed operating strategy can substantially cut user journey times and operating costs by up to 54% and 60% each for a range of 10-30 taxis initiated per zone. This result shows that there are settings where such service is highly warranted
    • …
    corecore