184 research outputs found

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Foundations of Session Types and Behavioural Contracts

    Get PDF
    International audienceBehavioural type systems, usually associated to concurrent or distributed computations, encompass concepts such as interfaces, communication protocols, and contracts, in addition to the traditional input/output operations. The behavioural type of a software component specifies its expected patterns of interaction using expressive type languages, so that types can be used to determine automatically whether the component interacts correctly with other components. Two related important notions of behavioural types are those of session types and behavioural contracts. This paper surveys the main accomplishments of the last twenty years within these two approaches

    Multiparty Session Programming with Global Protocol Combinators

    Get PDF
    EPSRC Doctoral Prize FellowshipMultiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures the absence of communication errors and deadlocks for well-typed communicating processes. The state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure correct usage of communication channels and (2) external domain-specific languages for specifying and verifying multiparty protocols. To overcome these limitations, we propose a library for programming with global combinators -- a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. We formalise global combinators and prove a sound realisability of global combinators -- a well-typed global combinator derives a set of local types, by which typed endpoint programs can ensure type and communication safety. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. We compare our implementation to untyped and continuation-passing style implementations, and demonstrate its expressiveness by implementing a plethora of protocols. We show our library can interoperate with existing libraries and services, implementing DNS (Domain Name Service) protocol and the OAuth (Open Authentication) protocol
    • …
    corecore