1,198 research outputs found

    Perturbative Quantum Field Theory on Random Trees

    Full text link
    In this paper we start a systematic study of quantum field theory on random trees. Using precise probability estimates on their Galton-Watson branches and a multiscale analysis, we establish the general power counting of averaged Feynman amplitudes and check that they behave indeed as living on an effective space of dimension 4/3, the spectral dimension of random trees. In the `just renormalizable' case we prove convergence of the averaged amplitude of any completely convergent graph, and establish the basic localization and subtraction estimates required for perturbative renormalization. Possible consequences for an SYK-like model on random trees are briefly discussed.Comment: 44 page

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    Improving the Asymmetric TSP by Considering Graph Structure

    Get PDF
    Recent works on cost based relaxations have improved Constraint Programming (CP) models for the Traveling Salesman Problem (TSP). We provide a short survey over solving asymmetric TSP with CP. Then, we suggest new implied propagators based on general graph properties. We experimentally show that such implied propagators bring robustness to pathological instances and highlight the fact that graph structure can significantly improve search heuristics behavior. Finally, we show that our approach outperforms current state of the art results.Comment: Technical repor

    Hyperbolic low-dimensional invariant tori and summations of divergent series

    Full text link
    We consider a class of a priori stable quasi-integrable analytic Hamiltonian systems and study the regularity of low-dimensional hyperbolic invariant tori as functions of the perturbation parameter. We show that, under natural nonresonance conditions, such tori exist and can be identified through the maxima or minima of a suitable potential. They are analytic inside a disc centered at the origin and deprived of a region around the positive or negative real axis with a quadratic cusp at the origin. The invariant tori admit an asymptotic series at the origin with Taylor coefficients that grow at most as a power of a factorial and a remainder that to any order N is bounded by the (N+1)-st power of the argument times a power of N!N!. We show the existence of a summation criterion of the (generically divergent) series, in powers of the perturbation size, that represent the parametric equations of the tori by following the renormalization group methods for the resummations of perturbative series in quantum field theoryComment: 32 pages, 5 figure

    Quantum Electrodynamics at Large Distances II: Nature of the Dominant Singularities

    Full text link
    Accurate calculations of macroscopic and mesoscopic properties in quantum electrodynamics require careful treatment of infrared divergences: standard treatments introduce spurious large-distances effects. A method for computing these properties was developed in a companion paper. That method depends upon a result obtained here about the nature of the singularities that produce the dominant large-distance behaviour. If all particles in a quantum field theory have non-zero mass then the Landau-Nakanishi diagrams give strong conditions on the singularities of the scattering functions. These conditions are severely weakened in quantum electrodynamics by effects of points where photon momenta vanish. A new kind of Landau-Nakanishi diagram is developed here. It is geared specifically to the pole-decomposition functions that dominate the macroscopic behaviour in quantum electrodynamics, and leads to strong results for these functions at points where photon momenta vanish.Comment: 40 pages, 11 encapsulated postscript figures, latexed, math_macros.tex can be found on Archive. full postscript available from http://theorl.lbl.gov/www/theorgroup/papers/35972.p

    Exponential algorithmic speedup by quantum walk

    Full text link
    We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time.Comment: 24 pages, 7 figures; minor corrections and clarification

    Aspects of Group Field Theory

    Full text link
    I review the basic ingredients of discretized gravity which motivate the introduction of Group Field Theory. Thus I describe the GFT formulation of some models and conclude with a few remarks on the emergence of noncommutative structures in such models.Comment: Invited Talk at the conference: XX Fall Workshop on Geometry and Physics, ICMAT, Madrid 2011. To be published in AIP Conference Proceeding
    • …
    corecore