15,293 research outputs found

    Concatenated structure and construction of certain code families

    Get PDF
    In this thesis, we consider concatenated codes and their generalizations as the main tool for two different purposes. Our first aim is to extend the concatenated structure of quasi-cyclic codes to its two generalizations: generalized quasi-cyclic codes and quasi-abelian codes. Concatenated structure have consequences such as a general minimum distance bound. Hence, we obtain minimum distance bounds, which are analogous to Jensen's bound for quasi-cyclic codes, for generalized quasicyclic and quasi-abelian codes. We also prove that linear complementary dual quasi-abelian codes are asymptotically good, using the concatenated structure. Moreover, for generalized quasi-cyclic and quasi-abelian codes, we prove, as in the quasi-cyclic codes, that their concatenated decomposition and the Chinese Remainder decomposition are equivalent. The second purpose of the thesis is to construct a linear complementary pair of codes using concatenations. This class of codes have been of interest recently due to their applications in cryptography. This extends the recent result of Carlet et al. on the concatenated construction of linear complementary dual codes

    Some quaternary additive codes outperform linear counterparts

    Full text link
    The additive codes may have better parameters than linear codes. However, it is still a challenging problem to efficiently construct additive codes that outperform linear codes, especially those with greater distances than linear codes of the same lengths and dimensions. This paper focuses on constructing additive codes that outperform linear codes based on quasi-cyclic codes and combinatorial methods. Firstly, we propose a lower bound on the symplectic distance of 1-generator quasi-cyclic codes of index even. Secondly, we get many binary quasi-cyclic codes with large symplectic distances utilizing computer-supported combination and search methods, all of which correspond to good quaternary additive codes. Notably, some additive codes have greater distances than best-known quaternary linear codes in Grassl's code table (bounds on the minimum distance of quaternary linear codes http://www.codetables.de) for the same lengths and dimensions. Moreover, employing a combinatorial approach, we partially determine the parameters of optimal quaternary additive 3.5-dimensional codes with lengths from 2828 to 254254. Finally, as an extension, we also construct some good additive complementary dual codes with larger distances than the best-known quaternary linear complementary dual codes in the literature

    Quasi-Cyclic Asymptotically Regular LDPC Codes

    Full text link
    Families of "asymptotically regular" LDPC block code ensembles can be formed by terminating (J,K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates, minimum distance that grows linearly with block length, and capacity approaching iterative decoding thresholds, despite the fact that the terminated ensembles are almost regular. In this paper, we investigate the properties of the quasi-cyclic (QC) members of such an ensemble. We show that an upper bound on the minimum Hamming distance of members of the QC sub-ensemble can be improved by careful choice of the component protographs used in the code construction. Further, we show that the upper bound on the minimum distance can be improved by using arrays of circulants in a graph cover of the protograph.Comment: To be presented at the 2010 IEEE Information Theory Workshop, Dublin, Irelan

    On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes

    Get PDF
    In this work, we study the minimum/stopping distance of array low-density parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code specified by two integers q and m, where q is an odd prime and m <= q. In the literature, the minimum/stopping distance of these codes (denoted by d(q,m) and h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact results, for small values of q and m, and general (i.e., independent of q) bounds have been established. For m=6, the best known minimum distance upper bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002), is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <= 20 and a new upper bound d(q,7) <= 24 by using the concept of a template support matrix of a codeword/stopping set. The bounds are tight with high probability in the sense that we have not been able to find codewords of strictly lower weight for several values of q using a minimum distance probabilistic algorithm. Finally, we provide new specific minimum/stopping distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was presented in part at the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, June/July 201
    corecore