7,526 research outputs found

    A Reduction for Automated Verification of Authentication Protocols

    Get PDF
    Authentication protocols (including protocols that provide key establishment) are designed to work correctly in the presence of an adversary that can (1) perform an unbounded number of encryptions and tuplings while fabricating messages, and (2) prompt honest principals to engage in an unbounded number of concurrent runs of the protocol. The amount of local state maintained by a single run of an authentication protocol is bounded. Intuitively, this suggests that there is a bound on the resources needed to attack the protocol. Such bounds clarify the nature of attacks on these protocols and provide a rigorous basis for automated verification of authentication protocols. However, few such bounds are known. This paper defines a domainspecific language for authentication protocols and establishes an upper bound on the resources needed to attack a large subset of the protocols expressible in that language, including versions of the Yahalom protocol and the Needham-Schroeder public-key proto..

    Expected loss analysis of thresholded authentication protocols in noisy conditions

    Get PDF
    A number of authentication protocols have been proposed recently, where at least some part of the authentication is performed during a phase, lasting nn rounds, with no error correction. This requires assigning an acceptable threshold for the number of detected errors. This paper describes a framework enabling an expected loss analysis for all the protocols in this family. Furthermore, computationally simple methods to obtain nearly optimal value of the threshold, as well as for the number of rounds is suggested. Finally, a method to adaptively select both the number of rounds and the threshold is proposed.Comment: 17 pages, 2 figures; draf

    A framework for analyzing RFID distance bounding protocols

    Get PDF
    Many distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unied framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary, and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is nally demonstrated on a study case: Munilla-Peinado distance bounding protocol
    corecore