5,688 research outputs found

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Sparse grid quadrature on products of spheres

    Full text link
    We examine sparse grid quadrature on weighted tensor products (WTP) of reproducing kernel Hilbert spaces on products of the unit sphere, in the case of worst case quadrature error for rules with arbitrary quadrature weights. We describe a dimension adaptive quadrature algorithm based on an algorithm of Hegland (2003), and also formulate a version of Wasilkowski and Wozniakowski's WTP algorithm (1999), here called the WW algorithm. We prove that the dimension adaptive algorithm is optimal in the sense of Dantzig (1957) and therefore no greater in cost than the WW algorithm. Both algorithms therefore have the optimal asymptotic rate of convergence given by Theorem 3 of Wasilkowski and Wozniakowski (1999). A numerical example shows that, even though the asymptotic convergence rate is optimal, if the dimension weights decay slowly enough, and the dimensionality of the problem is large enough, the initial convergence of the dimension adaptive algorithm can be slow.Comment: 34 pages, 6 figures. Accepted 7 January 2015 for publication in Numerical Algorithms. Revised at page proof stage to (1) update email address; (2) correct the accent on "Wozniakowski" on p. 7; (3) update reference 2; (4) correct references 3, 18 and 2

    MaxHedge: Maximising a Maximum Online

    Get PDF
    We introduce a new online learning framework where, at each trial, the learner is required to select a subset of actions from a given known action set. Each action is associated with an energy value, a reward and a cost. The sum of the energies of the actions selected cannot exceed a given energy budget. The goal is to maximise the cumulative profit, where the profit obtained on a single trial is defined as the difference between the maximum reward among the selected actions and the sum of their costs. Action energy values and the budget are known and fixed. All rewards and costs associated with each action change over time and are revealed at each trial only after the learner's selection of actions. Our framework encompasses several online learning problems where the environment changes over time; and the solution trades-off between minimising the costs and maximising the maximum reward of the selected subset of actions, while being constrained to an action energy budget. The algorithm that we propose is efficient and general in that it may be specialised to multiple natural online combinatorial problems.Comment: Published in AISTATS 201

    Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma

    Full text link
    We consider integer programming problems in standard form max{cTx:Ax=b,x0,xZn}\max \{c^Tx : Ax = b, \, x\geq 0, \, x \in Z^n\} where AZm×nA \in Z^{m \times n}, bZmb \in Z^m and cZnc \in Z^n. We show that such an integer program can be solved in time (mΔ)O(m)b2(m \Delta)^{O(m)} \cdot \|b\|_\infty^2, where Δ\Delta is an upper bound on each absolute value of an entry in AA. This improves upon the longstanding best bound of Papadimitriou (1981) of (mΔ)O(m2)(m\cdot \Delta)^{O(m^2)}, where in addition, the absolute values of the entries of bb also need to be bounded by Δ\Delta. Our result relies on a lemma of Steinitz that states that a set of vectors in RmR^m that is contained in the unit ball of a norm and that sum up to zero can be ordered such that all partial sums are of norm bounded by mm. We also use the Steinitz lemma to show that the 1\ell_1-distance of an optimal integer and fractional solution, also under the presence of upper bounds on the variables, is bounded by m(2mΔ+1)mm \cdot (2\,m \cdot \Delta+1)^m. Here Δ\Delta is again an upper bound on the absolute values of the entries of AA. The novel strength of our bound is that it is independent of nn. We provide evidence for the significance of our bound by applying it to general knapsack problems where we obtain structural and algorithmic results that improve upon the recent literature.Comment: We achieve much milder dependence of the running time on the largest entry in $b

    Dependent randomized rounding for clustering and partition systems with knapsack constraints

    Full text link
    Clustering problems are fundamental to unsupervised learning. There is an increased emphasis on fairness in machine learning and AI; one representative notion of fairness is that no single demographic group should be over-represented among the cluster-centers. This, and much more general clustering problems, can be formulated with "knapsack" and "partition" constraints. We develop new randomized algorithms targeting such problems, and study two in particular: multi-knapsack median and multi-knapsack center. Our rounding algorithms give new approximation and pseudo-approximation algorithms for these problems. One key technical tool, which may be of independent interest, is a new tail bound analogous to Feige (2006) for sums of random variables with unbounded variances. Such bounds are very useful in inferring properties of large networks using few samples

    Hybrid Rounding Techniques for Knapsack Problems

    Get PDF
    We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and powerful ways of rounding. As an application of these techniques, we present a linear-storage Polynomial Time Approximation Scheme (PTAS) and a Fully Polynomial Time Approximation Scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. This linear complexity bound gives a substantial improvement of the best previously known polynomial bounds.Comment: 19 LaTeX page
    corecore