333,943 research outputs found

    A Case Study in Matching Service Descriptions to Implementations in an Existing System

    Full text link
    A number of companies are trying to migrate large monolithic software systems to Service Oriented Architectures. A common approach to do this is to first identify and describe desired services (i.e., create a model), and then to locate portions of code within the existing system that implement the described services. In this paper we describe a detailed case study we undertook to match a model to an open-source business application. We describe the systematic methodology we used, the results of the exercise, as well as several observations that throw light on the nature of this problem. We also suggest and validate heuristics that are likely to be useful in partially automating the process of matching service descriptions to implementations.Comment: 20 pages, 19 pdf figure

    Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm

    Get PDF
    Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding- doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Optimizing for confidence - Costs and opportunities at the frontier between abstraction and reality

    Full text link
    Is there a relationship between computing costs and the confidence people place in the behavior of computing systems? What are the tuning knobs one can use to optimize systems for human confidence instead of correctness in purely abstract models? This report explores these questions by reviewing the mechanisms by which people build confidence in the match between the physical world behavior of machines and their abstract intuition of this behavior according to models or programming language semantics. We highlight in particular that a bottom-up approach relies on arbitrary trust in the accuracy of I/O devices, and that there exists clear cost trade-offs in the use of I/O devices in computing systems. We also show various methods which alleviate the need to trust I/O devices arbitrarily and instead build confidence incrementally "from the outside" by considering systems as black box entities. We highlight cases where these approaches can reach a given confidence level at a lower cost than bottom-up approaches.Comment: 11 pages, 1 figur

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process
    corecore