695 research outputs found

    A 12-bit SAR ADC for a flexible tactile sensor

    Get PDF
    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) are some of the most efficient ADC topologies available, allowing excellent performance values at low power consumption across a wide range of sampling frequencies. The proposed ADC is aimed at a tactile sensor application, requiring a low-noise and lowpower solution. In addition, it should have high SNDR to detect even the weakest signals with precision. This thesis presents a 12-bit 400 kS/s SAR ADC implemented in a 180 nm CMOS technology for such a task. The designed SAR ADC uses a hybrid R-C DAC topology consisting of a chargescaling MSB DAC and a voltage-scaling LSB DAC, allowing a good trade-off between power consumption, layout area and performance while keeping the total DAC capacitance under reasonable values. Bootstrapped switches have been implemented to preserve high-linearity during the sampling period. A double-tail dynamic comparator has been designed to obtain a low-noise measurement while ensuring suitable delay values. Finally, regarding the logic, an asynchronous implementation and the conventional switching algorithm provide a simple but effective solution to supply the digital signals of the design. Pre-layout noise simulations with input frequencies around 200 kHz show SNDR values of 72.07 dB, corresponding to an ENOB of 11.67 bits. The total power consumption is 365 ?W while the Walden and Schreier figure-of-merit (FoM) correspond to values of 275 fJ/conversion and 160 dB, respectively

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply

    Design of Low-Voltage High-Performance Sample and Hold Circuit in 0.18ÎŒm CMOS Technology

    Get PDF
    Over the last two decade, digital signal processing (DSP) has grown rapidly in electronic systems to provide more reconfigureability and programmability in the applications, compared to analog component, which allows easier design and test automation. Digital circuit usage is increasing because of scaling properties of very large scale integration (VLSI) processes. This has allowed new generation of digital circuit to attain higher speed, more functionality per chip, low power dissipation, lower cost. Analog world, analog to digital converter (ADC) are used to convert the signal from analog to digital domain. For interfacing with DSP sample and hold (S/H) circuit is a key building block in, and is often used in front end of the ADCs to relax their timing requirement. The function of S/H circuit is to take samples to its input signal and hold these samples in its output for some period of time. The analog circuits in low voltage and low power have assumed great significance due to mixed-mode design required for modern electronic gadgets that demand portability and little power consumption. The mixed mode circuit has existence of both analog and digital circuits on the same chip and it is possible to have low voltage digital circuit in modern scaled-down technologies. However the same is not always true with analog circuits due to the constrains of device noise level and threshold voltage (VT) of MOSFET. Thus for analog circuit to co-exist on the same substrate along with digital system and share same supply voltage, the operation of analog circuit in low voltage environment is essential. The objective of this research is to design a low-voltage, high-performance S/H circuit that will address the above problems. A typical switch capacitor S/H circuit needs amplifier, switches and capacitor. New amplifier have been designed by using the architecture of single stage fully differential folded cascode low voltage operation transconductance amplifier (OTA) which has high gain and speed; the gin boosting technique was used for purpose of increasing the gain of the OTA. This technique does not affect the speed of the single stage. The transmission gate switches using CMOS devices, which have higher linearity and higher speed over a single MOS switch, have been designed for use in the S/H circuit. The switches are operated by clock generator with two non overlapping clock signals having low rise and fall time offering low noise for the S/H circuit. The clock was designed with 77.17ps rise and fall time to reduce the errors of driving MOS switches which results in higher linearity. The S/H circuit was designed to operate with 1.8V supply voltage in 0.18um technology. The sampling rate is 40MSPS with spurious free dynamic range (SFDR) 65.7dB and SNR 70dB

    Low Power Analog Design in Scaled Technologies

    Get PDF
    In this paper an overview on the main issues in analog IC design in scaled CMOS technology is presented. Decreasing the length of MOS channel and the gate oxide has led to undoubted advantages in terms of chip area, speed and power consumption (mainly exploited in the digital parts). Besides, some drawbacks are introduced in term of power leakage and reliability. Moreover, the scaled technology lower supply voltage requirement has led analog designers to find new circuital solution to guarantee the required performance

    Implementation of a 200 MSps 12-bit SAR ADC

    Get PDF
    Analog-to-digital converters (ADCs) with high conversion frequency, often based on pipelined architectures, are used for measuring instruments, wireless communication and video applications. Successive approximation register (SAR) converters offer a compact and power efficient alternative but the conversion speed is typically designed for lower frequencies. In this thesis a low-power 12-bit 200 MSps SAR ADC based on charge redistribution was designed for a 28 nm CMOS technology. The proposed design uses an efficient SAR algorithm (merged capacitor switching procedure) to reduce power consumption due to capacitor charging by 88 % compared to a conventional design, as well as reducing the total capacitor area by half. Sampling switches were bootstrapped for increased linearity compared to simple transmission gates. Another feature of the low power design is a fully-dynamic comparator which does not require a preamplifier. Pre-layout simulations of the SAR ADC with 800 MHz input frequency shows an SNDR of 64.8 dB, corresponding to an ENOB of 10.5, and an SFDR of 75.3 dB. The total power consumption is 1.77 mW with an estimated value of 500 W for the unimplemented digital logic. Calculation of the Schreier figure-of-merit was done with an input signal at the Nyquist frequency. The simulated SNDR, SFDR and power equals 69.5 dB, 77.3 dB and 1.9 mW respectively, corresponding to a figure-of merit of 176.6 dB.FrÄn analogt till digitalt - snabba och strömsnÄla omvandlare Dagens digitala samhÀlle stÀller höga krav pÄ prestanda och effektivitet. I samarbete med Ericsson i Lund har en krets för signalomvandling utvecklats. Genom smart design uppnÄs hög hastighet och lÄg strömförbrukning som ligger i forskningens framkant. FrÄn analogt till digitalt Ett viktigt byggblock för telekommunikation och videoapplikationer Àr sÄ kallade A/D-omvandlare, som översÀtter mellan analoga signaler (till exempel ljud) och digitala signaler bestÄende av ettor och nollor. En vÀldigt effektiv metod för A/D-omvandling bygger pÄ sÄ kallad successiv approximation. Metoden innebÀr att signalen som ska omvandlas jÀmförs med en referensnivÄ, som stegvis justeras för att nÀrma sig signalens vÀrde. Till slut har man en tillrÀckligt god uppskattning av vÀrdet som ska mÀtas. Just en sÄdan omvandlare har utvecklats med höga krav pÄ hastighet och energiförbrukning. Detta gjordes genom datorsimuleringar av modeller som beskriver kretsen. ReferensnivÄn skapas ofta genom att styra ett nÀtverk som lagrar elektrisk laddning. Omvandlingens noggrannhet, eller upplösning, beror pÄ hur mÄnga nivÄer som finns tillgÀngliga det vill sÀga hur nÀra signalens vÀrde man kan komma. I den designade kretsen finns hela 4096 nivÄer! Det finns mÄnga kÀllor till osÀkerhet i systemet, bland annat hur exakta referensnivÄerna Àr och hur bra jÀmförelsen med insignalen kan göras. Eftersom dessa eventuellt kan leda till en försÀmring av omvandlingens noggrannhet mÄste alla delar i kretsen utformas med detta i Ätanke. Höga hastigheter Eftersom det krÀvs mÄnga steg för referensnivÄn att nÀrma sig signalens vÀrde Àr den maximala omvandlingshastigheten ofta begrÀnsad. Med teknikens utveckling öppnas nya möjligheter i takt med att mikrochippens enskilda komponenter blir snabbare. Modern forskning visar att omvandlare baserade pÄ successiv approximation kan uppnÄ hastigheter pÄ flera miljoner mÀtvÀrden varje sekund, vilket Àven den utvecklade kretsen klarar av. Effektiv design Nya metoder för successiv approximation möjliggör stora besparingar nÀr det gÀller effektförbrukning, till exempel genom att effektivisera upp- och urladdningen av nÀtverket. Genom smÄ Àndringar kunde nÀtverkets energiförbrukning minskas med över 90 % samtidigt som dess area halverades. Eftersom produktionskostnaden för integrerade kretsar Àr hög medför varje minskning av kretsens area att kostnaden sjunker

    Systematic Design Methodology for Successive – Approximation ADCs

    Get PDF
    Successive – Approximation ADCs are widely used in ultra – low – power applications. This paper describes a systematic design procedure for designing Successive – Approximation ADCs for biomedical sensor nodes. The proposed scheme is adopted in the design of a 12 bit 1 kS/s ADC. Implemented in 65 nm CMOS, the ADC consumes 354 nW at a sampling rate of 1 kS/s operating with 1.2 supply voltage. The achieved ENOB is 11.6, corresponding to a FoM of 114 fJ/conversion – step

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia ElectrotĂ©cnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de CiĂȘncias e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals
    • 

    corecore