4,002 research outputs found

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner

    Nonparametric Estimation of the Bayes Error

    Get PDF
    This thesis is concerned with the performance of nonparametric classifiers and their application to the estimation of the Rayes error. Although the behavior of these classifiers as the number of preclassified design samples becomes infinite is well understood, very little is known regarding their finite sample error performance. Here, we examine the performance of Parzen and k-nearest neighbor (k-NN) classifiers, relating the expected error rates to the size of the design set and the various, design parameters (kernel size and shape, value of k, distance metric for nearest neighbor calculation, etc.). These results lead to several significant improvements in the design procedures for nonparametric classifiers, as well as improved estimates of the Bayes error rate. , Our results show that increasing the sample size is in many cases not an effective practical means of improving the classifier performance. Rather, careful attention must be paid to the decision threshold, selection of the kernel size and shape (for Parzen classifiers), and selection of k and the distance metric (for k-NN classifiers). Guidelines are developed toward propper selection of each of these parameters. The use of nonparametric error rates for Bayes error estimation is also considered, and techniques are given which reduce or compensate for the biases of the nonparametric error rates. A bootstrap technique is also developed which allows the designer to estimate the standard deviation of a nonparametric estimate of the Bayes error

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357
    corecore