423 research outputs found

    SynergyGrids: blockchain-supported distributed microgrid energy trading

    Get PDF
    Growing intelligent cities is witnessing an increasing amount of local energy generation through renewable energy resources. Energy trade among the local energy generators (aka prosumers) and consumers can reduce the energy consumption cost and also reduce the dependency on conventional energy resources, not to mention the environmental, economic, and societal benefits. However, these local energy sources might not be enough to fulfill energy consumption demands. A hybrid approach, where consumers can buy energy from both prosumers (that generate energy) and also from prosumer of other locations, is essential. A centralized system can be used to manage this energy trading that faces several security issues and increase centralized development cost. In this paper, a hybrid energy trading system coupled with a smart contract named SynergyGrids has been proposed as a solution, that reduces the average cost of energy and load over the utility grids. To the best of our knowledge, this work is the first attempt to create a hybrid energy trading platform over the smart contract for energy demand prediction. An hourly energy data set has been utilized for testing and validation purposes. The trading system shows 17.8% decrease in energy cost for consumers and 76.4% decrease in load over utility grids when compared with its counterparts

    Trading Electricity with Blockchain Systems

    Get PDF
    On the wave of the development of new ICT technologies and renewable energy, the power system will certainly experience great changes to its outdated architecture over the next several decades. One of the key drivers of change in the power system is distributed energy resources. They are completely changing the paradigm of the power system as a system with a centralized hierarchy and one-way power flows from generation to customer and from high voltage to low voltage. Because the goals of net zero greenhouse gas emissions are gathering pace and are being accepted by countries around the world, slowdown in the integration of distributed energy resources cannot be expected. Another reason why we can expect faster integration is the development of technology for energy production which is becoming more available to power consumers. Because of the problems that are currently occurring in the distribution system, it is clear that the system must be modernized in line with the development of these technologies. The technology that will likely have the greatest impact on the modernization of the power system is blockchain technology combined with the smart grid paradigm. Blockchain has the ability to completely change the way the power system is managed and optimized for performance

    Reinforcement Learning Based Cooperative P2P Energy Trading between DC Nanogrid Clusters with Wind and PV Energy Resources

    Full text link
    In order to replace fossil fuels with the use of renewable energy resources, unbalanced resource production of intermittent wind and photovoltaic (PV) power is a critical issue for peer-to-peer (P2P) power trading. To resolve this problem, a reinforcement learning (RL) technique is introduced in this paper. For RL, graph convolutional network (GCN) and bi-directional long short-term memory (Bi-LSTM) network are jointly applied to P2P power trading between nanogrid clusters based on cooperative game theory. The flexible and reliable DC nanogrid is suitable to integrate renewable energy for distribution system. Each local nanogrid cluster takes the position of prosumer, focusing on power production and consumption simultaneously. For the power management of nanogrid clusters, multi-objective optimization is applied to each local nanogrid cluster with the Internet of Things (IoT) technology. Charging/discharging of electric vehicle (EV) is performed considering the intermittent characteristics of wind and PV power production. RL algorithms, such as deep Q-learning network (DQN), deep recurrent Q-learning network (DRQN), Bi-DRQN, proximal policy optimization (PPO), GCN-DQN, GCN-DRQN, GCN-Bi-DRQN, and GCN-PPO, are used for simulations. Consequently, the cooperative P2P power trading system maximizes the profit utilizing the time of use (ToU) tariff-based electricity cost and system marginal price (SMP), and minimizes the amount of grid power consumption. Power management of nanogrid clusters with P2P power trading is simulated on the distribution test feeder in real-time and proposed GCN-PPO technique reduces the electricity cost of nanogrid clusters by 36.7%.Comment: 22 pages, 8 figures, to be submitted to Applied Energy of Elsevie

    Blockchain and internet of things for electrical energy decentralization: A review and system architecture

    Get PDF
    Decentralization in electrical power grids has gained increasing importance, especially in the last two decades, since transmission system operators (TSO), distribution system operators (DSO) and consumers are more aware of energy efficiency and energy sustainability issues. Therefore, globally, due to the introduction of energy production technologies near the consumers, in residential and industrial sectors, new scenarios of decentralized energy production (DEP) are emerging. To guarantee an adequate power management in the electrical power grids, incorporating producers, consumers, and producers-consumers, commonly designated as prosumers together, it is important to adopt intelligent systems and platforms that allow the provision of information on energy consumption and production in real time, as well as for obtaining the price for the sale and purchase of energy. In this research the literature is analysed to identify the appropriate solutions to implement a decentralized electrical power grid based on sensors, blockchain and smart contracts, evaluating the current state of the art and pilot projects already in place. A conceptual model for a power grid model is presented, with renewable energy production, combining Internet of Things (IoT), blockchain and smart contracts.A descentralização nas redes elétricas ganhou importância crescente, especialmente nas últimas duas décadas, uma vez que os operadores da rede de transporte (ORT), operadores da rede de distribuição (ORD) e consumidores estão mais conscientes das questões de eficiência energética e sustentabilidade energética. Globalmente, devido à introdução de tecnologias de produção de energia junto dos consumidores, nos setores residencial e industrial, estão a surgir novos cenários de produção de energia descentralizada. Para garantir uma adequada gestão de energia nas redes elétricas, integrando produtores, consumidores e produtores-consumidores, vulgarmente designados por prosumers, é importante adotar sistemas e plataformas inteligentes que permitam fornecer informações sobre consumo e produção de energia em tempo real, bem como para obter o preço de compra e venda de energia. Nesta pesquisa, a literatura é analisada para identificar as soluções adequadas para implementar uma rede elétrica descentralizada baseada em sensores, blockchain e contratos inteligentes, avaliando o estado da arte atual e projetos piloto já em curso. É apresentado um modelo conceptual para um modelo de rede elétrica, com produção de energia renovável, combinando Internet das Coisas (IoT), blockchain e contratos inteligentes
    corecore