5,584 research outputs found

    Blockchain's adoption in IoT: The challenges, and a way forward

    Full text link
    © 2018 Elsevier Ltd The underlying technology of Bitcoin is blockchain, which was initially designed for financial value transfer only. Nonetheless, due to its decentralized architecture, fault tolerance and cryptographic security benefits such as pseudonymous identities, data integrity and authentication, researchers and security analysts around the world are focusing on the blockchain to resolve security and privacy issues of IoT. However, presently, not much work has been done to assess blockchain's viability for IoT and the associated challenges. Hence, to arrive at intelligible conclusions, this paper carries out a systematic study of the peculiarities of the IoT environment including its security and performance requirements and progression in blockchain technologies. We have identified the gaps by mapping the security and performance benefits inferred by the blockchain technologies and some of the blockchain-based IoT applications against the IoT requirements. We also discovered some practical issues involved in the integration of IoT devices with the blockchain. In the end, we propose a way forward to resolve some of the significant challenges to the blockchain's adoption in IoT

    Blockchain for IoT: The challenges and a way forward

    Full text link
    Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved Bitcoin has revolutionized the decentralized payment system by excluding the need for a trusted third party, reducing the transaction (TX) fee and time involved in TX confirmation as compared to a conventional banking system. The underlying technology of Bitcoin is Blockchain, which was initially designed for financial TXs only. However, due to its decentralized architecture, fault tolerance and cryptographic security benefits such as user anonymity, data integrity and authentication, researchers and security analysts around the world are focusing on the Blockchain to resolve security and privacy issues of IoT. But at the same time, default limitations of Blockchain, such as latency in transaction confirmation, scalability concerning Blockchain size and network expansion, lack of IoT-centric transaction validation rules, the absence of IoT-focused consensus protocols and insecure device integration are required to be addressed before it can be used securely and efficiently in an IoT environment. Therefore, in this paper we analyze some of the existing consensus protocols used in various Blockchain-based applications, with a focus on investigating significant limitations in TX (Transaction) validation and consensus mechanism that make them inappropriate to be implemented in Blockchain-based IoT systems. We also propose a way forward to address these issues

    BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems

    Get PDF
    The scale of Internet of Things (IoT) systems has expanded in recent times and, in tandem with this, IoT solutions have developed symbiotic relationships with technologies, such as edge Computing. IoT has leveraged edge computing capabilities to improve the capabilities of IoT solutions, such as facilitating quick data retrieval, low latency response, and advanced computation, among others. However, in contrast with the benefits offered by edge computing capabilities, there are several detractors, such as centralized data storage, data ownership, privacy, data auditability, and security, which concern the IoT community. This study leveraged blockchain’s inherent capabilities, including distributed storage system, non-repudiation, privacy, security, and immutability, to provide a novel, advanced edge computing architecture for IoT systems. Specifically, this blockchain-based edge computing architecture addressed centralized data storage, data auditability, privacy, data ownership, and security. Following implementation, the performance of this solution was evaluated to quantify performance in terms of response time and resource utilization. The results show the viability of the proposed and implemented architecture, characterized by improved privacy, device data ownership, security, and data auditability while implementing decentralized storage
    • …
    corecore