233 research outputs found

    D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

    Full text link
    We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.Comment: To appear in IEEE Transactions on Signal Processin

    Distributed Partitioned Big-Data Optimization via Asynchronous Dual Decomposition

    Full text link
    In this paper we consider a novel partitioned framework for distributed optimization in peer-to-peer networks. In several important applications the agents of a network have to solve an optimization problem with two key features: (i) the dimension of the decision variable depends on the network size, and (ii) cost function and constraints have a sparsity structure related to the communication graph. For this class of problems a straightforward application of existing consensus methods would show two inefficiencies: poor scalability and redundancy of shared information. We propose an asynchronous distributed algorithm, based on dual decomposition and coordinate methods, to solve partitioned optimization problems. We show that, by exploiting the problem structure, the solution can be partitioned among the nodes, so that each node just stores a local copy of a portion of the decision variable (rather than a copy of the entire decision vector) and solves a small-scale local problem

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Distributed Maximum Likelihood Sensor Network Localization

    Full text link
    We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements. We derive a computational efficient edge-based version of this ML convex relaxation class and we design a distributed algorithm that enables the sensor nodes to solve these edge-based convex programs locally by communicating only with their close neighbors. This algorithm relies on the alternating direction method of multipliers (ADMM), it converges to the centralized solution, it can run asynchronously, and it is computation error-resilient. Finally, we compare our proposed distributed scheme with other available methods, both analytically and numerically, and we argue the added value of ADMM, especially for large-scale networks

    Network Inference via the Time-Varying Graphical Lasso

    Full text link
    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability
    corecore