122 research outputs found

    Role of secondary mismatch repair (MMR) frameshifts in the evolution of microsatellite instable (MSI) colorectal cancer

    Get PDF
    Mismatch repair deficient (MMRd) cancers face a delicate balance. Whilst hypermutation fuels adaptive evolution, it also comes at the cost of immunogenic neoantigens and other deleterious mutations. How MMRd cancers navigate the costs versus benefits of hypermutation is unknown. By visualising the clonal architecture of MMRd colorectal cancer in situ I show that the mismatch repair system unfolds in reversible steps to adapt cellular mutability to immune selection. Mechanistically microsatellite instability unmasks two hypermutable homopolymers in the mismatch repair genes MSH6 and MSH3. Spontaneous frameshift mutation and reversion at these homopolymers allows them to act as a molecular switch, regulating expression of MutSα and MutSß respectively. Frameshift switching at these homopolymer sites modulates the rate and spectrum of mutations across the genome. In this manner stochastic mutation bursts combined with stringent immune selection, drive continuous adaptation. This work is supported by a bespoke clonally resolved exome sequencing dataset, validated using two large publicly available genomic datasets and tested in a mathematical model of mutation rate switching. In summary, this work identifies that adaptive mutability associates with increased immune escape and intratumour heterogeneity during mismatch repair deficient cancer evolution. Knowledge of this mechanism of adaptation may inform strategies to target resistance evolution in cancer treatment

    Patterns and Signals of Biology: An Emphasis On The Role of Post Translational Modifications in Proteomes for Function and Evolutionary Progression

    Get PDF
    After synthesis, a protein is still immature until it has been customized for a specific task. Post-translational modifications (PTMs) are steps in biosynthesis to perform this customization of protein for unique functionalities. PTMs are also important to protein survival because they rapidly enable protein adaptation to environmental stress factors by conformation change. The overarching contribution of this thesis is the construction of a computational profiling framework for the study of biological signals stemming from PTMs associated with stressed proteins. In particular, this work has been developed to predict and detect the biological mechanisms involved in types of stress response with PTMs in mitochondrial (Mt) and non-Mt protein. Before any mechanism can be studied, there must first be some evidence of its existence. This evidence takes the form of signals such as biases of biological actors and types of protein interaction. Our framework has been developed to locate these signals, distilled from “Big Data” resources such as public databases and the the entire PubMed literature corpus. We apply this framework to study the signals to learn about protein stress responses involving PTMs, modification sites (MSs). We developed of this framework, and its approach to analysis, according to three main facets: (1) by statistical evaluation to determine patterns of signal dominance throughout large volumes of data, (2) by signal location to track down the regions where the mechanisms must be found according to the types and numbers of associated actors at relevant regions in protein, and (3) by text mining to determine how these signals have been previously investigated by researchers. The results gained from our framework enable us to uncover the PTM actors, MSs and protein domains which are the major components of particular stress response mechanisms and may play roles in protein malfunction and disease

    New approaches to protein docking

    Get PDF
    In the first part of this work, we propose new methods for protein docking. First, we present two approaches to protein docking with flexible side chains. The first approach is a fast greedy heuristic, while the second is a branch -&-cut algorithm that yields optimal solutions. For a test set of protease-inhibitor complexes, both approaches correctly predict the true complex structure. Another problem in protein docking is the prediction of the binding free energy, which is the the final step of many protein docking algorithms. Therefore, we propose a new approach that avoids the expensive and difficult calculation of the binding free energy and, instead, employs a scoring function that is based on the similarity of the proton nuclear magnetic resonance spectra of the tentative complexes with the experimental spectrum. Using this method, we could even predict the structure of a very difficult protein-peptide complex that could not be solved using any energy-based scoring functions. The second part of this work presents BALL (Biochemical ALgorithms Library), a framework for Rapid Application Development in the field of Molecular Modeling. BALL provides an extensive set of data structures as well as classes for Molecular Mechanics, advanced solvation methods, comparison and analysis of protein structures, file import/export, NMR shift prediction, and visualization. BALL has been carefully designed to be robust, easy to use, and open to extensions. Especially its extensibility, which results from an object-oriented and generic programming approach, distinguishes it from other software packages.Der erste Teil dieser Arbeit beschäftigt sich mit neuen Ansätzen zum Proteindocking. Zunächst stellen wir zwei Ansätze zum Proteindocking mit flexiblen Seitenketten vor. Der erste Ansatz beruht auf einer schnellen, gierigen Heuristik, während der zweite Ansatz auf branch-&-cut-Techniken beruht und das Problem optimal lösen kann. Beide Ansätze sind in der Lage die korrekte Komplexstruktur für einen Satz von Testbeispielen (bestehend aus Protease-Inhibitor-Komplexen) vorherzusagen. Ein weiteres, grösstenteils ungelöstes, Problem ist der letzte Schritt vieler Protein-Docking-Algorithmen, die Vorhersage der freien Bindungsenthalpie. Daher schlagen wir eine neue Methode vor, die die schwierige und aufwändige Berechnung der freien Bindungsenthalpie vermeidet. Statt dessen wird eine Bewertungsfunktion eingesetzt, die auf der Ähnlichkeit der Protonen-Kernresonanzspektren der potentiellen Komplexstrukturen mit dem experimentellen Spektrum beruht. Mit dieser Methode konnten wir sogar die korrekte Struktur eines Protein-Peptid-Komplexes vorhersagen, an dessen Vorhersage energiebasierte Bewertungsfunktionen scheitern. Der zweite Teil der Arbeit stellt BALL (Biochemical ALgorithms Library) vor, ein Rahmenwerk zur schnellen Anwendungsentwicklung im Bereich MolecularModeling. BALL stellt eine Vielzahl von Datenstrukturen und Algorithmen für die FelderMolekülmechanik,Vergleich und Analyse von Proteinstrukturen, Datei-Import und -Export, NMR-Shiftvorhersage und Visualisierung zur Verfügung. Beim Entwurf von BALL wurde auf Robustheit, einfache Benutzbarkeit und Erweiterbarkeit Wert gelegt. Von existierenden Software-Paketen hebt es sich vor allem durch seine Erweiterbarkeit ab, die auf der konsequenten Anwendung von objektorientierter und generischer Programmierung beruht

    Microbial Biofilms

    Get PDF
    In the book Microbial Biofilms: Importance and applications, eminent scientists provide an up-to-date review of the present and future trends on biofilm-related research. This book is divided with four subdivisions as biofilm fundamentals, applications, health aspects, and their control. Moreover, this book also provides a comprehensive account on microbial interactions in biofilms, pyocyanin, and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, atomic force microscopic studies of biofilms, and biofilms in beverage industry. The book comprises a total of 21 chapters from valued contributions from world leading experts in Australia, Bulgaria, Canada, China, Serbia, Germany, Italy, Japan, the United Kingdom, the Kingdom of Saudi Arabia, Republic of Korea, Mexico, Poland, Portugal, and Turkey. This book may be used as a text or reference for everyone interested in biofilms and their applications. It is also highly recommended for environmental microbiologists, soil scientists, medical microbiologists, bioremediation experts, and microbiologists working in biocorrosion, biofouling, biodegradation, water microbiology, quorum sensing, and many other related areas. Scientists in academia, research laboratories, and industry will also find it of interest

    Assessing the robustness of genetic codes and genomes

    Full text link
    Deux approches principales existent pour évaluer la robustesse des codes génétiques et des séquences de codage. L'approche statistique est basée sur des estimations empiriques de probabilité calculées à partir d'échantillons aléatoires de permutations représentant les affectations d'acides aminés aux codons, alors que l'approche basée sur l'optimisation repose sur le pourcentage d’optimisation, généralement calculé en utilisant des métaheuristiques. Nous proposons une méthode basée sur les deux premiers moments de la distribution des valeurs de robustesse pour tous les codes génétiques possibles. En se basant sur une instance polynomiale du Problème d'Affectation Quadratique, nous proposons un algorithme vorace exact pour trouver la valeur minimale de la robustesse génomique. Pour réduire le nombre d'opérations de calcul des scores et de la borne supérieure de Cantelli, nous avons développé des méthodes basées sur la structure de voisinage du code génétique et sur la comparaison par paires des codes génétiques, entre autres. Pour calculer la robustesse des codes génétiques naturels et des génomes procaryotes, nous avons choisi 23 codes génétiques naturels, 235 propriétés d'acides aminés, ainsi que 324 procaryotes thermophiles et 418 procaryotes non thermophiles. Parmi nos résultats, nous avons constaté que bien que le code génétique standard soit plus robuste que la plupart des codes génétiques, certains codes génétiques mitochondriaux et nucléaires sont plus robustes que le code standard aux troisièmes et premières positions des codons, respectivement. Nous avons observé que l'utilisation des codons synonymes tend à être fortement optimisée pour amortir l'impact des changements d'une seule base, principalement chez les procaryotes thermophiles.There are two main approaches to assess the robustness of genetic codes and coding sequences. The statistical approach is based on empirical estimates of probabilities computed from random samples of permutations representing assignments of amino acids to codons, whereas, the optimization-based approach relies on the optimization percentage frequently computed by using metaheuristics. We propose a method based on the first two moments of the distribution of robustness values for all possible genetic codes. Based on a polynomially solvable instance of the Quadratic Assignment Problem, we propose also an exact greedy algorithm to find the minimum value of the genome robustness. To reduce the number of operations for computing the scores and Cantelli’s upper bound, we developed methods based on the genetic code neighborhood structure and pairwise comparisons between genetic codes, among others. For assessing the robustness of natural genetic codes and genomes, we have chosen 23 natural genetic codes, 235 amino acid properties, as well as 324 thermophilic and 418 non-thermophilic prokaryotes. Among our results, we found that although the standard genetic code is more robust than most genetic codes, some mitochondrial and nuclear genetic codes are more robust than the standard code at the third and first codon positions, respectively. We also observed that the synonymous codon usage tends to be highly optimized to buffer the impact of single-base changes, mainly, in thermophilic prokaryotes

    Determining and comparing protein function in Bacterial genome sequences

    Get PDF

    Interaction of SecA with Unfolded Polypeptides

    Get PDF
    The evolutionarily well-conserved SecA is essential for bacterial post-translational translocation. SecA uses the energy of ATP to drive preproteins through the membrane pore. The functional oligomeric state of SecA and the molecular basis for recognition of unfolded polypeptides by SecA are major unresolved questions that must be addressed to understand preprotein targeting and the molecular mechanics of SecA-mediated translocation. This thesis will address three aspects of these questions. First, the role of unstructured termini in the oligomerization and function of various SecA constructs was elucidated. By re-examining the tetramerization of a truncated SecA construct (SecA-N68), it was shown that the unstructured polypeptides at its termini are mediating its oligomerization. In turn, by removal of the first 14 N-terminal residues of the functional SecA-N95 construct, dimerization was drastically weakened. Although the weakened dimerization did not significantly affect the solution ATPase activity of SecA-N95 in vitro, it was shown that SecA-N95ΔN is not functional in vivo. Second, the interaction of unfolded polypeptides with SecA protein was investigated. It was revealed that preproteins contain sequences that can bind SecA in vitro though the binding site(s) located on the nucleotide binding domains and/or the stem region of the preprotein cross-linking domain. Both nucleotides and the N-terminal segment of SecA affected these interactions. Moreover, the sequences of several high affinity SecA binding peptides were analyzed and a possible “motif” on preproteins for interaction with SecA was identified. Finally, to acquire high-resolution insight into preprotein targeting mechanisms, we aimed at obtaining and improving the crystals of E. coli SecA-N95 and M. tuberculosis SecB (mtSecB). By removal of the unstructured termini of these proteins, larger crystals were obtained with higher frequency. Although the high-resolution structures of these molecules were not resolved, the advances made in the crystallization of these proteins paves the way for future efforts. In conclusion, this thesis has shown that SecA is able to interact with the unstructured polypeptides in vitro, and the presence of unstructured polypeptides at the termini of SecA have a profound affect on its function both in vivo and in vitro

    Compressão eficiente de sequências biológicas usando uma rede neuronal

    Get PDF
    Background: The increasing production of genomic data has led to an intensified need for models that can cope efficiently with the lossless compression of biosequences. Important applications include long-term storage and compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for biosequence compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2. This limitation is due to the absence of models specifically designed for DNA sequences. In this work, we combine the power of neural networks with specific DNA and amino acids models. For this purpose, we created GeCo3 and AC2, two new biosequence compressors. Both use a neural network for mixing the opinions of multiple specific models. Findings: We benchmark GeCo3 as a reference-free DNA compressor in five datasets, including a balanced and comprehensive dataset of DNA sequences, the Y-chromosome and human mitogenome, two compilations of archaeal and virus genomes, four whole genomes, and two collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in compression over the previous version (GeCo2) of 2:4%, 7:1%, 6:1%, 5:8%, and 6:0%, respectively. As a reference-based DNA compressor, we benchmark GeCo3 in four datasets constituted by the pairwise compression of the chromosomes of the genomes of several primates. GeCo3 improves the compression in 12:4%, 11:7%, 10:8% and 10:1% over the state-of-the-art. The cost of this compression improvement is some additional computational time (1:7_ to 3:0_ slower than GeCo2). The RAM is constant, and the tool scales efficiently, independently from the sequence size. Overall, these values outperform the state-of-the-art. For AC2 the improvements and costs over AC are similar, which allows the tool to also outperform the state-of-the-art. Conclusions: The GeCo3 and AC2 are biosequence compressors with a neural network mixing approach, that provides additional gains over top specific biocompressors. The proposed mixing method is portable, requiring only the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data analysis tools. GeCo3 and AC2 are released under GPLv3 and are available for free download at https://github.com/cobilab/geco3 and https://github.com/cobilab/ac2.Contexto: O aumento da produção de dados genómicos levou a uma maior necessidade de modelos que possam lidar de forma eficiente com a compressão sem perdas de biosequências. Aplicações importantes incluem armazenamento de longo prazo e análise de dados baseada em compressão. Na literatura, apenas alguns artigos recentes propõem o uso de uma rede neuronal para compressão de biosequências. No entanto, os resultados ficam aquém quando comparados com ferramentas de compressão de ADN específicas, como o GeCo2. Essa limitação deve-se à ausência de modelos específicos para sequências de ADN. Neste trabalho, combinamos o poder de uma rede neuronal com modelos específicos de ADN e aminoácidos. Para isso, criámos o GeCo3 e o AC2, dois novos compressores de biosequências. Ambos usam uma rede neuronal para combinar as opiniões de vários modelos específicos. Resultados: Comparamos o GeCo3 como um compressor de ADN sem referência em cinco conjuntos de dados, incluindo um conjunto de dados balanceado de sequências de ADN, o cromossoma Y e o mitogenoma humano, duas compilações de genomas de arqueas e vírus, quatro genomas inteiros e duas coleções de dados FASTQ de um viroma humano e ADN antigo. O GeCo3 atinge uma melhoria sólida na compressão em relação à versão anterior (GeCo2) de 2,4%, 7,1%, 6,1%, 5,8% e 6,0%, respectivamente. Como um compressor de ADN baseado em referência, comparamos o GeCo3 em quatro conjuntos de dados constituídos pela compressão aos pares dos cromossomas dos genomas de vários primatas. O GeCo3 melhora a compressão em 12,4%, 11,7%, 10,8% e 10,1% em relação ao estado da arte. O custo desta melhoria de compressão é algum tempo computacional adicional (1,7 _ a 3,0 _ mais lento do que GeCo2). A RAM é constante e a ferramenta escala de forma eficiente, independentemente do tamanho da sequência. De forma geral, os rácios de compressão superam o estado da arte. Para o AC2, as melhorias e custos em relação ao AC são semelhantes, o que permite que a ferramenta também supere o estado da arte. Conclusões: O GeCo3 e o AC2 são compressores de sequências biológicas com uma abordagem de mistura baseada numa rede neuronal, que fornece ganhos adicionais em relação aos biocompressores específicos de topo. O método de mistura proposto é portátil, exigindo apenas as probabilidades dos modelos como entradas, proporcionando uma fácil adaptação a outros compressores de dados ou ferramentas de análise baseadas em compressão. O GeCo3 e o AC2 são distribuídos sob GPLv3 e estão disponíveis para download gratuito em https://github.com/ cobilab/geco3 e https://github.com/cobilab/ac2.Mestrado em Engenharia de Computadores e Telemátic
    corecore