13 research outputs found

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end

    Computational Complexity Of Bi-clustering

    Get PDF
    In this work we formalize a new natural objective (or cost) function for bi-clustering - Monochromatic bi-clustering. Our objective function is suitable for detecting meaningful homogenous clusters based on categorical valued input matrices. Such problems have arisen recently in systems biology where researchers have inferred functional classifications of biological agents based on their pairwise interactions. We analyze the computational complexity of the resulting optimization problems. We show that finding optimal solutions is NP-hard and complement this result by introducing a polynomial time approximation algorithm for this bi-clustering task. This is the first positive approximation guarantee for bi-clustering algorithms. We also show that bi-clustering with our objective function can be viewed as a generalization of correlation clustering

    User-Specific Bicluster-based Collaborative Filtering

    Get PDF
    Tese de mestrado, CiĂŞncia de Dados, Universidade de Lisboa, Faculdade de CiĂŞncias, 2020Collaborative Filtering is one of the most popular and successful approaches for Recommender Systems. However, some challenges limit the effectiveness of Collaborative Filtering approaches when dealing with recommendation data, mainly due to the vast amounts of data and their sparse nature. In order to improve the scalability and performance of Collaborative Filtering approaches, several authors proposed successful approaches combining Collaborative Filtering with clustering techniques. In this work, we study the effectiveness of biclustering, an advanced clustering technique that groups rows and columns simultaneously, in Collaborative Filtering. When applied to the classic U-I interaction matrices, biclustering considers the duality relations between users and items, creating clusters of users who are similar under a particular group of items. We propose USBCF, a novel biclustering-based Collaborative Filtering approach that creates user specific models to improve the scalability of traditional CF approaches. Using a realworld dataset, we conduct a set of experiments to objectively evaluate the performance of the proposed approach, comparing it against baseline and state-of-the-art Collaborative Filtering methods. Our results show that the proposed approach can successfully suppress the main limitation of the previously proposed state-of-the-art biclustering-based Collaborative Filtering (BBCF) since BBCF can only output predictions for a small subset of the system users and item (lack of coverage). Moreover, USBCF produces rating predictions with quality comparable to the state-of-the-art approaches

    Development of Biclustering Techniques for Gene Expression Data Modeling and Mining

    Get PDF
    The next-generation sequencing technologies can generate large-scale biological data with higher resolution, better accuracy, and lower technical variation than the arraybased counterparts. RNA sequencing (RNA-Seq) can generate genome-scale gene expression data in biological samples at a given moment, facilitating a better understanding of cell functions at genetic and cellular levels. The abundance of gene expression datasets provides an opportunity to identify genes with similar expression patterns across multiple conditions, i.e., co-expression gene modules (CEMs). Genomescale identification of CEMs can be modeled and solved by biclustering, a twodimensional data mining technique that allows clustering of rows and columns in a gene expression matrix, simultaneously. Compared with traditional clustering that targets global patterns, biclustering can predict local patterns. This unique feature makes biclustering very useful when applied to big gene expression data since genes that participate in a cellular process are only active in specific conditions, thus are usually coexpressed under a subset of all conditions. The combination of biclustering and large-scale gene expression data holds promising potential for condition-specific functional pathway/network analysis. However, existing biclustering tools do not have satisfied performance on high-resolution RNA-Seq data, majorly due to the lack of (i) a consideration of high sparsity of RNA-Seq data, especially for scRNA-Seq data, and (ii) an understanding of the underlying transcriptional regulation signals of the observed gene expression values. QUBIC2, a novel biclustering algorithm, is designed for large-scale bulk RNA-Seq and single-cell RNA-seq (scRNA-Seq) data analysis. Critical novelties of the algorithm include (i) used a truncated model to handle the unreliable quantification of genes with low or moderate expression; (ii) adopted the Gaussian mixture distribution and an information-divergency objective function to capture shared transcriptional regulation signals among a set of genes; (iii) utilized a Dual strategy to expand the core biclusters, aiming to save dropouts from the background; and (iv) developed a statistical framework to evaluate the significances of all the identified biclusters. Method validation on comprehensive data sets suggests that QUBIC2 had superior performance in functional modules detection and cell type classification. The applications of temporal and spatial data demonstrated that QUBIC2 could derive meaningful biological information from scRNA-Seq data. Also presented in this dissertation is QUBICR. This R package is characterized by an 82% average improved efficiency compared to the source C code of QUBIC. It provides a set of comprehensive functions to facilitate biclustering-based biological studies, including the discretization of expression data, query-based biclustering, bicluster expanding, biclusters comparison, heatmap visualization of any identified biclusters, and co-expression networks elucidation. In the end, a systematical summary is provided regarding the primary applications of biclustering for biological data and more advanced applications for biomedical data. It will assist researchers to effectively analyze their big data and generate valuable biological knowledge and novel insights with higher efficiency

    Forestogram: Biclustering Visualization Framework with Applications in Public Transport and Bioinformatics

    Get PDF
    RÉSUMÉ : Dans de nombreux problèmes d’analyse de données, les données sont exprimées dans une matrice avec les sujets en ligne et les attributs en colonne. Les méthodes de segmentations traditionnelles visent à regrouper les sujets (lignes), selon des critères de similitude entre ces sujets. Le but est de constituer des groupes de sujets (lignes) qui partagent un certain degré de ressemblance. Les groupes obtenus permettent de garantir que les sujets partagent des similitudes dans leurs attributs (colonnes), il n’y a cependant aucune garantie sur ce qui se passe au niveau des attributs (les colonnes). Dans certaines applications, un regroupement simultané des lignes et des colonnes appelé biclustering de la matrice de données peut être souhaité. Pour cela, nous concevons et développons un nouveau cadre appelé Forestogram, qui permet le calcul de ce regroupement simultané des lignes et des colonnes (biclusters)dans un mode hiérarchique. Le regroupement simultané des lignes et des colonnes de manière hiérarchique peut aider les praticiens à mieux comprendre comment les groupes évoluent avec des propriétés théoriques intéressantes. Forestogram, le nouvel outil de calcul et de visualisation proposé, pourrait être considéré comme une extension 3D du dendrogramme, avec une fusion orthogonale étendue. Chaque bicluster est constitué d’un groupe de lignes (ou de sujets) qui déplie un schéma fortement corrélé avec le groupe de colonnes (ou attributs) correspondantes. Cependant, au lieu d’effectuer un clustering bidirectionnel indépendamment de chaque côté, nous proposons un algorithme de biclustering hiérarchique qui prend les lignes et les colonnes en même temps pour déterminer les biclusters. De plus, nous développons un critère d’information basé sur un modèle qui fournit un nombre estimé de biclusters à travers un ensemble de configurations hiérarchiques au sein du forestogramme sous des hypothèses légères. Nous étudions le cadre suggéré dans deux perspectives appliquées différentes, l’une dans le domaine du transport en commun, l’autre dans le domaine de la bioinformatique. En premier lieu, nous étudions le comportement des usagers dans le transport en commun à partir de deux informations distinctes, les données temporelles et les coordonnées spatiales recueillies à partir des données de transaction de la carte à puce des usagers. Dans de nombreuses villes, les sociétés de transport en commun du monde entier utilisent un système de carte à puce pour gérer la perception des tarifs. L’analyse de cette information fournit un aperçu complet de l’influence de l’utilisateur dans le réseau de transport en commun interactif. À cet égard, l’analyse des données temporelles, décrivant l’heure d’entrée dans le réseau de transport en commun est considérée comme la composante la plus importante des données recueillies à partir des cartes à puce. Les techniques classiques de segmentation, basées sur la distance, ne sont pas appropriées pour analyser les données temporelles. Une nouvelle projection intuitive est suggérée pour conserver le modèle de données horodatées. Ceci est introduit dans la méthode suggérée pour découvrir le modèle temporel comportemental des utilisateurs. Cette projection conserve la distance temporelle entre toute paire arbitraire de données horodatées avec une visualisation significative. Par conséquent, cette information est introduite dans un algorithme de classification hiérarchique en tant que méthode de segmentation de données pour découvrir le modèle des utilisateurs. Ensuite, l’heure d’utilisation est prise en compte comme une variable latente pour rendre la métrique euclidienne appropriée dans l’extraction du motif spatial à travers notre forestogramme. Comme deuxième application, le forestogramme est testé sur un ensemble de données multiomiques combinées à partir de différentes mesures biologiques pour étudier comment l’état de santé des patientes et les modalités biologiques correspondantes évoluent hiérarchiquement au cours du terme de la grossesse, dans chaque bicluster. Le maintien de la grossesse repose sur un équilibre finement équilibré entre la tolérance à l’allogreffe foetale et la protection mécanismes contre les agents pathogènes envahissants. Malgré l’impact bien établi du développement pendant les premiers mois de la grossesse sur les résultats à long terme, les interactions entre les divers mécanismes biologiques qui régissent la progression de la grossesse n’ont pas été étudiées en détail. Démontrer la chronologie de ces adaptations à la grossesse à terme fournit le cadre pour de futures études examinant les déviations impliquées dans les pathologies liées à la grossesse, y compris la naissance prématurée et la prééclampsie. Nous effectuons une analyse multi-physique de 51 échantillons de 17 femmes enceintes, livrant à terme. Les ensembles de données comprennent des mesures de l’immunome, du transcriptome, du microbiome, du protéome et du métabolome d’échantillons obtenus simultanément chez les mêmes patients. La modélisation prédictive multivariée utilisant l’algorithme Elastic Net est utilisée pour mesurer la capacité de chaque ensemble de données à prédire l’âge gestationnel. En utilisant la généralisation empilée, ces ensembles de données sont combinés en un seul modèle. Ce modèle augmente non seulement significativement le pouvoir prédictif en combinant tous les ensembles de données, mais révèle également de nouvelles interactions entre différentes modalités biologiques. En outre, notre forestogramme suggéré est une autre ligne directrice avec l’âge gestationnel au moment de l’échantillonnage qui fournit un modèle non supervisé pour montrer combien d’informations supervisées sont nécessaires pour chaque trimestre pour caractériser les changements induits par la grossesse dans Microbiome, Transcriptome, Génome, Exposome et Immunome réponses efficacement.----------ABSTRACT : In many statistical modeling problems data are expressed in a matrix with subjects in row and attributes in column. In this regard, simultaneous grouping of rows and columns known as biclustering of the data matrix is desired. We design and develop a new framework called Forestogram, with the aim of fast computational and hierarchical illustration of biclusters. Often in practical data analysis, we deal with a two-dimensional object known as the data matrix, where observations are expressed as samples (or subjects) in rows, and attributes (or features) in columns. Thus, simultaneous grouping of rows and columns in a hierarchical manner helps practitioners better understanding how clusters evolve. Forestogram, a novel computational and visualization tool, could be thought of as a 3D expansion of dendrogram, with extended orthogonal merge. Each bicluster consists of group of rows (or samples) that unfolds a highly-correlated schema with their corresponding group of columns (or attributes). However, instead of performing two-way clustering independently on each side, we propose a hierarchical biclustering algorithm which takes rows and columns at the same time to determine the biclusters. Furthermore, we develop a model-based information criterion which provides an estimated number of biclusters through a set of hierarchical configurations within the forestogram under mild assumptions. We study the suggested framework in two different applied perspectives, one in public transit domain, another one in bioinformatics field. First, we investigate the users’ behavior in public transit based on two distinct information, temporal data and spatial coordinates gathered from smart card. In many cities, worldwide public transit companies use smart card system to manage fare collection. Analysis of this information provides a comprehensive insight of user’s influence in the interactive public transit network. In this regard, analysis of temporal data, describing the time of entering to the public transit network is considered as the most substantial component of the data gathered from the smart cards. Classical distance-based techniques are not always suitable to analyze this time series data. A novel projection with intuitive visual map from higher dimension into a three-dimensional clock-like space is suggested to reveal the underlying temporal pattern of public transit users. This projection retains the temporal distance between any arbitrary pair of time-stamped data with meaningful visualization. Consequently, this information is fed into a hierarchical clustering algorithm as a method of data segmentation to discover the pattern of users. Then, the time of the usage is taken as a latent variable into account to make the Euclidean metric appropriate for extracting the spatial pattern through our forestogram. As a second application, forestogram is tested on a multiomics dataset combined from different biological measurements to study how patients and corresponding biological modalities evolve hierarchically in each bicluster over the term of pregnancy. The maintenance of pregnancy relies on a finely-tuned balance between tolerance to the fetal allograft and protective mechanisms against invading pathogens. Despite the well-established impact of development during the early months of pregnancy on long-term outcomes, the interactions between various biological mechanisms that govern the progression of pregnancy have not been studied in details. Demonstrating the chronology of these adaptations to term pregnancy provides the framework for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. We perform a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets include measurements from the immunome, transcriptome, microbiome, proteome, and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net algorithm is used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets are combined into a single model. This model not only significantly increases the predictive power by combining all datasets, but also reveals novel interactions between different biological modalities. Furthermore, our suggested forestogram is another guideline along with the gestational age at time of sampling that provides an unsupervised model to show how much supervised information is necessary for each trimester to characterize the pregnancy-induced changes in Microbiome, Transcriptome, Genome, Exposome, and Immunome responses effectively

    Data Mining Using the Crossing Minimization Paradigm

    Get PDF
    Our ability and capacity to generate, record and store multi-dimensional, apparently unstructured data is increasing rapidly, while the cost of data storage is going down. The data recorded is not perfect, as noise gets introduced in it from different sources. Some of the basic forms of noise are incorrect recording of values and missing values. The formal study of discovering useful hidden information in the data is called Data Mining. Because of the size, and complexity of the problem, practical data mining problems are best attempted using automatic means. Data Mining can be categorized into two types i.e. supervised learning or classification and unsupervised learning or clustering. Clustering only the records in a database (or data matrix) gives a global view of the data and is called one-way clustering. For a detailed analysis or a local view, biclustering or co-clustering or two-way clustering is required involving the simultaneous clustering of the records and the attributes. In this dissertation, a novel fast and white noise tolerant data mining solution is proposed based on the Crossing Minimization (CM) paradigm; the solution works for one-way as well as two-way clustering for discovering overlapping biclusters. For decades the CM paradigm has traditionally been used for graph drawing and VLSI (Very Large Scale Integration) circuit design for reducing wire length and congestion. The utility of the proposed technique is demonstrated by comparing it with other biclustering techniques using simulated noisy, as well as real data from Agriculture, Biology and other domains. Two other interesting and hard problems also addressed in this dissertation are (i) the Minimum Attribute Subset Selection (MASS) problem and (ii) Bandwidth Minimization (BWM) problem of sparse matrices. The proposed CM technique is demonstrated to provide very convincing results while attempting to solve the said problems using real public domain data. Pakistan is the fourth largest supplier of cotton in the world. An apparent anomaly has been observed during 1989-97 between cotton yield and pesticide consumption in Pakistan showing unexpected periods of negative correlation. By applying the indigenous CM technique for one-way clustering to real Agro-Met data (2001-2002), a possible explanation of the anomaly has been presented in this thesis

    Unique networks: a method to identity disease-specific regulatory networks from microarray data

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The survival of any organismis determined by the mechanisms triggered in response to the inputs received. Underlying mechanisms are described by graphical networks that can be inferred from different types of data such as microarrays. Deriving robust and reliable networks can be complicated due to the microarray structure of the data characterized by a discrepancy between the number of genes and samples of several orders of magnitude, bias and noise. Researchers overcome this problem by integrating independent data together and deriving the common mechanisms through consensus network analysis. Different conditions generate different inputs to the organism which reacts triggering different mechanisms with similarities and differences. A lot of effort has been spent into identifying the commonalities under different conditions. Highlighting similarities may overshadow the differences which often identify the main characteristics of the triggered mechanisms. In this thesis we introduce the concept of study-specific mechanism. We develop a pipeline to semiautomatically identify study-specific networks called unique-networks through a combination of consensus approach, graphical similarities and network analysis. The main pipeline called UNIP (Unique Networks Identification Pipeline) takes a set of independent studies, builds gene regulatory networks for each of them, calculates an adaptation of the sensitivity measure based on the networks graphical similarities, applies clustering to group the studies who generate the most similar networks into study-clusters and derives the consensus networks. Once each study-cluster is associated with a consensus-network, we identify the links that appear only in the consensus network under consideration but not in the others (unique-connections). Considering the genes involved in the unique-connections we build Bayesian networks to derive the unique-networks. Finally, we exploit the inference tool to calculate each gene prediction-accuracy across all studies to further refine the unique-networks. Biological validation through different software and the literature are explored to validate our method. UNIP is first applied to a set of synthetic data perturbed with different levels of noise to study the performance and verify its reliability. Then, wheat under stress conditions and different types of cancer are explored. Finally, we develop a user-friendly interface to combine the set of studies by using AND and NOT logic operators. Based on the findings, UNIP is a robust and reliable method to analyse large sets of transcriptomic data. It easily detects the main complex relationships between transcriptional expression of genes specific for different conditions and also highlights structures and nodes that could be potential targets for further research

    Unsupervised feature analysis for high dimensional big data

    Get PDF
    In practice we often encounter the scenario that label information is unavailable due to either high cost of manual labeling or unwillingness of users to label. When label information is not available, traditional supervised learning can not be directly applied so we need to study unsupervised methods which could work well even without supervision. Feature analysis has been proven effective and important for many applications. Feature analysis is a broad research field, whose research topics includes but are not limited to feature selection, feature extraction, feature construction, and feature composition e.g., in topic discovery the learned topics can be viewed as compound features. In many real systems, it is often necessary and important to do feature analysis to determine which individual or compound features should be used for posterior learning tasks. The effectiveness of traditional feature analysis often relies on labels of the training data examples. However, in the era of big data, label information is often unavailable. In the unsupervised scenario, it is more challenging to do feature analysis. Two important research topics in unsupervised feature analysis are unsupervised feature selection and unsupervised feature composition, e.g., to discover topics as compound features. This would naturally create two lines for unsupervised feature analysis. Also, combined with single-view or multiple-view for the data, we would generate a table with four cells. Except for the single-view feature composition (or topic discovery) where there're already many work done e.g., PLSA, LDA, and NMF, the other three cells correspond to new research topics, and there is few work done yet. For single view unsupervised feature analysis, we propose two unsupervised feature selection methods. For multi-view unsupervised feature analysis, we focus on text-image web news data and propose a multi-view unsupervised feature selection method and a text-image topic model. Specifically, for single-view unsupervised feature selection, we propose a new method that is called Robust Unsupervised Feature Selection (RUFS), where pseudo cluster labels are learned via local learning regularized robust NMF and feature selection is performed simultaneously by robust joint l2,1l_{2, 1}-norm minimization. Outliers could be effectively handled and redundant or noisy features could be effectively reduced. We also design a (projected) limited-memory BFGS based linear time iterative algorithm to efficiently solve the optimization problem. We also study how the choice of norms for data fitting and feature selection terms affect the ultimate unsupervised feature selection performance. Specifically, we propose to use joint adaptive loss and l2/l0l_2/l_0 minimization for data fitting and feature selection. We mathematically explain desirable properties of joint adaptive loss and l2/l0l_2/l_0 minimization over recent unsupervised feature selection models. We solve the optimization problem with an efficient iterative algorithm whose computational complexity and memory cost are linear to both sample size and feature size. For multiple-view unsupervised feature selection, we propose a more effective approach for high dimensional text-image web news data. We propose to use raw text features in label learning to avoid information loss. We propose a new multi-view unsupervised feature selection method in which image local learning regularized orthogonal nonnegative matrix factorization is used to learn pseudo labels and simultaneously robust joint l2,1l_{2,1}-norm minimization is performed to select discriminative features. Cross-view consensus on pseudo labels can be obtained as much as possible. For multi-view topic discovery, we study how to systematically mine topics from high dimensional text-image web news data. The application problem is important because almost all news articles have one picture associated. Unlike traditional topic modeling which considers text alone, the new task aims to discover heterogeneous topics from web news of multiple data types. We propose to tackle the problem by a regularized nonnegative constrained l2,1l_{2,1}-norm minimization framework. We also present a new iterative algorithm to solve the optimization problem. The proposed single-view feature selection methods can be applied on almost all single-view data. The proposed multi-view methods are designed to process text-image web news data, but the idea can be naturally generalized to analyze any multi-view data. Practitioners could run the proposed methods to select features that will be used in posterior learning tasks. One can also run our multi-view topic model to analyze and visualize topics in text-image web news corpora to help interpret the data

    Biclustering: Methods, Software and Application

    Get PDF
    Over the past 10 years, biclustering has become popular not only in the field of biological data analysis but also in other applications with high-dimensional two way datasets. This technique clusters both rows and columns simultaneously, as opposed to clustering only rows or only columns. Biclustering retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. This dissertation focuses on improving and advancing biclustering methods. Since most existing methods are extremely sensitive to variations in parameters and data, we developed an ensemble method to overcome these limitations. It is possible to retrieve more stable and reliable bicluster in two ways: either by running algorithms with different parameter settings or by running them on sub- or bootstrap samples of the data and combining the results. To this end, we designed a software package containing a collection of bicluster algorithms for different clustering tasks and data scales, developed several new ways of visualizing bicluster solutions, and adapted traditional cluster validation indices (e.g. Jaccard index) for validating the bicluster framework. Finally, we applied biclustering to marketing data. Well-established algorithms were adjusted to slightly different data situations, and a new method specially adapted to ordinal data was developed. In order to test this method on artificial data, we generated correlated original random values. This dissertation introduces two methods for generating such values given a probability vector and a correlation structure. All the methods outlined in this dissertation are freely available in the R packages biclust and orddata. Numerous examples in this work illustrate how to use the methods and software.In den letzten 10 Jahren wurde das Biclustern vor allem auf dem Gebiet der biologischen Datenanalyse, jedoch auch in allen Bereichen mit hochdimensionalen Daten immer populärer. Unter Biclustering versteht man das simultane Clustern von 2-Wege-Daten, um Teilmengen von Objekten zu finden, die sich zu Teilmengen von Variablen ähnlich verhalten. Diese Arbeit beschäftigt sich mit der Weiterentwicklung und Optimierung von Biclusterverfahren. Neben der Entwicklung eines Softwarepaketes zur Berechnung, Aufarbeitung und graphischen Darstellung von Bicluster Ergebnissen wurde eine Ensemble Methode für Bicluster Algorithmen entwickelt. Da die meisten Algorithmen sehr anfällig auf kleine Veränderungen der Startparameter sind, können so robustere Ergebnisse erzielt werden. Die neue Methode schließt auch das Zusammenfügen von Bicluster Ergebnissen auf Subsample- und Bootstrap-Stichproben mit ein. Zur Validierung der Ergebnisse wurden auch bestehende Maße des traditionellen Clusterings (z.B. Jaccard Index) für das Biclustering adaptiert und neue graphische Mittel für die Interpretation der Ergebnisse entwickelt. Ein weiterer Teil der Arbeit beschäftigt sich mit der Anwendung von Bicluster Algorithmen auf Daten aus dem Marketing Bereich. Dazu mussten bestehende Algorithmen verändert und auch ein neuer Algorithmus speziell für ordinale Daten entwickelt werden. Um das Testen dieser Methoden auf künstlichen Daten zu ermöglichen, beinhaltet die Arbeit auch die Ausarbeitung eines Verfahrens zur Ziehung ordinaler Zufallszahlen mit vorgegebenen Wahrscheinlichkeiten und Korrelationsstruktur. Die in der Arbeit vorgestellten Methoden stehen durch die beiden R Pakete biclust und orddata allgemein zur Verfügung. Die Nutzbarkeit wird in der Arbeit durch zahlreiche Beispiele aufgezeigt
    corecore