47 research outputs found

    Protection of Relational Databases by Means of Watermarking: Recent Advances and Challenges

    Get PDF
    Databases represent today great economical and strategic concerns for both enterprises and public institutions. In that context, where data leaks, robbery as well as innocent or even hostile data degradation represent a real danger, and watermarking appears as an interesting tool. Watermarking is based on the imperceptible embedding of a message or watermark into a database in order, for instance, to determine its origin as well as to detect if it has been modified. A major advantage of watermarking in relation to other digital content protection mechanisms is that it leaves access to the data while keeping them protected by means of a watermark, independent of the data format storage. Nevertheless, it is necessary to ensure that the introduced distortion does not perturb the exploitation of the database. In this chapter, we give a general overview of the latest database watermarking methods, focusing on those dealing with distortion control. In particular, we present a recent technique based on an ontological modeling of the database semantics that represent the relationships in between attributes—relationships that should be preserved in order to avoid the appearance of incoherent and unlikely records

    Watermarking Generative Information Systems for Duplicate Traceability

    Full text link

    Reducing Multiple Occurrences of Meta-Mark Selection in Relational Data Watermarking

    Get PDF
    Contrary to multimedia data watermarking approaches, it is not recommended that relational data watermarking techniques consider sequential selection for marks in the watermark and embedding locations in the protected digital asset. Indeed, considering the database relations' elements, i.e., tuples and attributes, when watermarking techniques are based on sequential processes, watermark detection can be easily compromised by performing subset reverse order attacks. As a result, attackers can obtain owner evidence-free high-quality data since no data modifications for mark removing are required for the malicious operation to succeed. A standard solution to this problem has been pseudo-random selection, which often leads to choosing the same marks multiple times, and ignoring others, thus compromising the embedding of the entire watermark. This work proposes an engine that contributes to controlling marks' recurrent selection, allowing marks excluded by previous approaches to be considered and detected with 100% accuracy. The experiments performed show a dramatic improvement of the embedded watermark quality when the proposed engine is included in watermarking techniques' architecture. They also provide evidence that this proposal leads to higher resilience against common malicious operations such as subset and superset attacks

    HQR-Scheme: A High Quality and resilient virtual primary key generation approach for watermarking relational data

    Get PDF
    Most of the watermarking techniques designed to protect relational data often use the Primary Key (PK) of relations to perform the watermark synchronization. Despite offering high confidence to the watermark detection, these approaches become useless if the PK can be erased or updated. A typical example is when an attacker wishes to use a stolen relation, unlinked to the rest of the database. In that case, the original values of the PK lose relevance, since they are not employed to check the referential integrity. Then, it is possible to erase or replace the PK, compromising the watermark detection with no need to perform the slightest modification on the rest of the data. To avoid the problems caused by the PK-dependency some schemes have been proposed to generate Virtual Primary Keys (VPK) used instead. Nevertheless, the quality of the watermark synchronized using VPKs is compromised due to the presence of duplicate values in the set of VPKs and the fragility of the VPK schemes against the elimination of attributes. In this paper, we introduce the metrics to allow precise measuring of the quality of the VPKs generated by any scheme without requiring to perform the watermark embedding. This way, time waste can be avoided in case of low-quality detection. We also analyze the main aspects to design the ideal VPK scheme, seeking the generation of high-quality VPK sets adding robustness to the process. Finally, a new scheme is presented along with the experiments carried out to validate and compare the results with the rest of the schemes proposed in the literature

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works
    corecore