185 research outputs found

    An enhanced multicarrier modulation system for mobile communications

    Get PDF
    PhD ThesisThe recent revolution in mobile communications and the increased demand on more efficient transmission systems influence the research to enhance and invent new modulation techniques. Orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM) is one of the multicarrier modulations techniques that overcomes some of the weaknesses of the conventional OFDM in term of bandwidth and power efficiencies. This thesis presents a novel multicarrier modulation scheme with improved performance in mobile communications context. Initially, the theoretical principles behind OFDM and OFDM/OQAM are discussed and the advantages of OFDM/OQAM over OFDM are highlighted. The time-frequency localization of pulse shapes is examined over different types of pulses. The effect of the localization and the pulse choice on OFDM/OQAM performance is demonstrated. The first contribution is introducing a new variant of multicarrier modulation system based on the integration of the Walsh-Hadamard transform with the OFDM/OQAM modulator. The full analytical transmission model of the system is derived over flat fading and frequency selective channels. Next, because of the critical requirement of low implementation complexity in mobile systems, a new fast algorithm transform is developed to reduce the implementation complexity of the system. The introduced fast algorithm has demonstrated a remarkable 60 percent decrease in the hardware requirement compared to the cascaded configuration. Although, the problem of high peak to average power ratio (PAPR) is one of the main drawbacks that associated with most multicarrier modulation techniques, the new system achieved lower values compared to the conventional systems. Subsequently, three new algorithms to reduce PAPR named Walsh overlapped selective mapping (WOSLM) for a high PAPR reduction, simplified selective mapping (SSLM) for a very low implementation complexity and Walsh partial transmit sequence (WPTS), are developed. Finally, in order to assess the reliability of the presented system in this thesis at imperfect environments, the performance of the system is investigated in the presence of high power amplifier, channel estimation errors, and carrier frequency offset (CFO). Two channel estimations algorithms named enhanced pair of pilots (EPOP) and averaged enhanced pair of pilots (AEPOP), and one CFO estimator technique called frequency domain (FD) CFO estimator, are suggested to provide reliable performance.Ministry of Higher Education and Scientific Research (MOHSR) of Ira

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-Complexity Digital Modem Implementation for High-Speed Point-To-Point Wireless Communications

    Full text link
    © 2018 IEEE. A low-complexity digital modem is presented in this paper for achieving high-speed and wideband point-To-point (P2P) wireless communications. By combining multiple functionalities into the transmitter and receiver filters, the signal processing complexity in the digital baseband can be significantly reduced. The structures and the implementation using field programmable gate array (FPGA) for the transmitter and receiver filters are described in details. Pre-equalization for reducing the impact of practical channel frequency response can be easily incorporated into the transmitter filter structure. The experimental test results using a 20 Gigabits per second (Gbps) digital modem prototype demonstrate the satisfactory performance with low FPGA resource usage

    Data decoding aided channel estimation techniques for OFDM systems in vehicular environment

    Get PDF
    L'oggetto del presente lavoro di tesi è costituito dallo studio e sviluppo di algoritmi di inseguimento di canale per sistemi basati su una modulazione di tipo Orthogonal Frequency Division Multiplexing (OFDM), con riferimento allo standard IEEE802.11p per comunicazioni mobili di tipo Wireless Local Area Network (WLAN), tra veicolo e veicolo e tra veicolo e infrastruttura. La caratteristica principale dei sistemi wireless in ambiente veicolare µe la presenza dell'effetto Doppler dovuto alla velocità relativa tra trasmettitore e ricevitore che rende il canale wireless tempo variante

    An Investigation into the Implementation and Performance of Spectrally Shaped Orthogonal Frequency Division Multiplex

    Get PDF
    Orthogonal Frequency Division Multiplex (OFDM) is a flexible, robust multi-carrier modulation scheme. The orthogonal spectral shaping and spacing of OFDM sub-carriers ensure that their spectra can be over-lapped without leading to undesirable inter-carrier interference. Conventional OFDM systems have non-band limited Sinc(x) shaped subcarrier spectra. An alternative form of OFDM, referred to hereafter as Spectrally Shaped OFDM, employs band limited Nyquist shaped sub-carrier spectra. The research described in this thesis investigates the strengths and weaknesses of Spectrally Shaped OFDM as a potential modulation scheme for future mobile radio applications. From this research a novel Digital Signal Processing architecture for modulating and demodulating Spectrally Shaped OFDM sub-carriers has been derived which exploits the combination of a complex Discrete Fourier Transform (DFT) and PolyPhase Network (PPN) filter. This architecture is shown to significantly reduce the minimum number of computations required per symbol compared to previous designs. Using a custom coded computer simulation, the effects of varying the key parameters of the novel architecture's PolyPhase Filter (PPN) filter an the overall system complexity, spectral performance and system signal-to-distortion have been extensively studied. From these studies it is shown that compared to similar conventional OFDM systems, Spectrally Shaped OFDM systems possess superior out-of-band spectral qualities but significantly worse Peak-to-Average-Power-Ratio (PAPR) envelope performance. lt is also shown that the absolute value of the end PPN filter coefficients (dependent on the roll-off factor of the sub-carrier spectral shaping) dictate the system signal-to-distortion ratio when no time-domain windowing of the PPN filter coefficients is applied. Finally the effects of a both time and frequency selective fast fading channels on the modulation scheme's uncoded Bit Error Rate (BER) versus Signal-to-Noise (SNR) performance are simulated. The results obtained indicate that Spectrally Shaped OFDM is more robust (lower BER) to frequency-selective fading than time-selective fading

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Spectral Correlation of Multicarrier Modulated Signals and its Application for Signal Detection

    Get PDF
    Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM) signals: conventional OFDM and filter bank based multicarrier (FBMC) signals. The spectral correlation characterization of MCM signal can be described by a special linear periodic time-variant (LPTV) system. Using this LPTV description, we have derived the explicit theoretical formulas of nonconjugate and conjugate cyclic autocorrelation function (CAF) and spectral correlation function (SCF) for OFDM and FBMC signals. According to theoretical spectral analysis, Cyclostationary Signatures (CS) are artificially embedded into MCM signal and a low-complexity signature detector is, therefore, presented for detecting MCM signal. Theoretical analysis and simulation results demonstrate the efficiency and robustness of this CS detector compared to traditionary energy detector

    A hybrid-structure offset-QAM filter-bank multi-carrier MIMO system

    Get PDF
    Offset quadrature amplitude modulation (OQAM) filter-bank multi-carrier (FBMC), has great potential for boosting the spectral efficiency (SE) and energy efficiency (EE) of future communication systems. This is due to its superior spectral localization, CP-less transmission and relaxed synchronization requirements. Our research focuses on three main OQAM/FBMC research problems: the computational complexity reduction taking equalization into consideration, its integration with multiple-input multiple-output (MIMO) and its high peak-to-average power ratio (PAPR). OQAM/FBMC systems are mainly implemented either using frequency spreading (FS) or polyphase network (PPN) techniques. The PPN technique is generally less complex, but when using frequency domain equalization (FDE) to equalize multipath channel effects at the receiver, there is a computational complexity overhead when using PPN. A novel hybrid-structure OQAM/FBMC MIMO space-frequency block coding (SFBC) system is proposed, to achieve the lowest possible overall complexity in conjunction with FDE at the receiver in frequency selective Rayleigh fading channel. The Alamouti SFBC block coding is performed on the complex-orthogonal signal before OQAM processing, which resolves the problems of intrinsic interference when integrating OQAM/FBMC with MIMO. In better multipath channel conditions with a line-of-sight (LOS) path, a zero-forcing (ZF) time domain equalization (TDE) is exploited to further reduce the computational complexity with comparable performance bit-error-rate (BER). On the other hand, to tackle the high PAPR problem of the OQAM/FBMC system in the uplink, a novel single carrier (SC)-OQAM/FBMC MIMO system is proposed. The system uses DFT-spreading applied to the OQAM modulated signal, along with interleaved subcarrier mapping to significantly reduce the PAPR and enhance the BER performance over Rayleigh fading channels, with relatively low additional computational complexity compared to the original complexity of the FBMC system and compared to other FBMC PAPR reduction techniques.The proposed hybrid-structure system has shown significant BER performance in frequency-selective Rayleigh fading channels compared to OFDM, with significantly lower OOB emissions in addition to the enhanced SE due to the absence of CP. In mild multipath fading channels with a LOS component, the PPN OQAM/FBMC MIMO using TDE has a comparable BER performance with significantly less computational complexity. As for the uplink, the SC-OQAM/FBMC MIMO system significantly reduces the PAPR and enhances the BER performance, with relatively low additional computational complexity
    corecore