12,574 research outputs found

    Concurrent Lexicalized Dependency Parsing: The ParseTalk Model

    Full text link
    A grammar model for concurrent, object-oriented natural language parsing is introduced. Complete lexical distribution of grammatical knowledge is achieved building upon the head-oriented notions of valency and dependency, while inheritance mechanisms are used to capture lexical generalizations. The underlying concurrent computation model relies upon the actor paradigm. We consider message passing protocols for establishing dependency relations and ambiguity handling.Comment: 90kB, 7pages Postscrip

    Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    Get PDF
    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system

    Closing the gap between guidance and practice, an investigation of the relevance of design guidance to practitioners using object-oriented technologies

    Get PDF
    This thesis investigates if object oriented guidance is relevant in practice, and how this affects software that is produced. This is achieved by surveying practitioners and studying how constructs such as interfaces and inheritance are used in open-source systems. Surveyed practitioners framed 'good design' in terms of impact on development and maintenance. Recognition of quality requires practitioner judgement (individually and as a group), and principles are valued over rules. Time constraints heighten sensitivity to the rework cost of poor design decisions. Examination of open source systems highlights the use of interface and inheritance. There is some evidence of 'textbook' use of these structures, and much use is simple. Outliers are widespread indicating a pragmatic approach. Design is found to reflect the pressures of practice - high-level decisions justify 'designed' structures and architecture, while uncertainty leads to deferred design decisions - simpler structures, repetition, and unconsolidated design. Sub-populations of structures can be identified which may represent common trade-offs. Useful insights are gained into practitioner attitude to design guidance. Patterns of use and structure are identified which may aid in assessment and comprehension of object oriented systems.This thesis investigates if object oriented guidance is relevant in practice, and how this affects software that is produced. This is achieved by surveying practitioners and studying how constructs such as interfaces and inheritance are used in open-source systems. Surveyed practitioners framed 'good design' in terms of impact on development and maintenance. Recognition of quality requires practitioner judgement (individually and as a group), and principles are valued over rules. Time constraints heighten sensitivity to the rework cost of poor design decisions. Examination of open source systems highlights the use of interface and inheritance. There is some evidence of 'textbook' use of these structures, and much use is simple. Outliers are widespread indicating a pragmatic approach. Design is found to reflect the pressures of practice - high-level decisions justify 'designed' structures and architecture, while uncertainty leads to deferred design decisions - simpler structures, repetition, and unconsolidated design. Sub-populations of structures can be identified which may represent common trade-offs. Useful insights are gained into practitioner attitude to design guidance. Patterns of use and structure are identified which may aid in assessment and comprehension of object oriented systems

    Ground terminal expert (GTEX). Part 2: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    Get PDF
    A research effort was undertaken to investigate how expert system technology could be applied to a satellite communications system. The focus of the expert system is the satellite earth station. A proof of concept expert system called the Ground Terminal Expert (GTEX) was developed at the University of Akron in collaboration with the NASA Lewis Research Center. With the increasing demand for satellite earth stations, maintenance is becoming a vital issue. Vendors of such systems will be looking for cost effective means of maintaining such systems. The objective of GTEX is to aid in diagnosis of faults occurring with the digital earth station. GTEX was developed on a personal computer using the Automated Reasoning Tool for Information Management (ART-IM) developed by the Inference Corporation. Developed for the Phase 2 digital earth station, GTEX is a part of the Systems Integration Test and Evaluation (SITE) facility located at the NASA Lewis Research Center

    Semantic networks

    Get PDF
    AbstractA semantic network is a graph of the structure of meaning. This article introduces semantic network systems and their importance in Artificial Intelligence, followed by I. the early background; II. a summary of the basic ideas and issues including link types, frame systems, case relations, link valence, abstraction, inheritance hierarchies and logic extensions; and III. a survey of ‘world-structuring’ systems including ontologies, causal link models, continuous models, relevance, formal dictionaries, semantic primitives and intersecting inference hierarchies. Speed and practical implementation are briefly discussed. The conclusion argues for a synthesis of relational graph theory, graph-grammar theory and order theory based on semantic primitives and multiple intersecting inference hierarchies

    Error propagation metrics from XMI

    Get PDF
    This work describes the production of an application Error Propagation Metrics from XMI which can extract process and display software design metrics from XMI files. The tool archives these design metrics in a standard XML format defined by a metric document type definition.;XMI is a flavour of XML allowing the description of UML models. As such, the XMI representation of a software design will include information from which a variety of software design metrics can be extracted. These metrics are potentially useful in improving the software design process, either throughout the early stages of design if a suitable XMI-enabled modelling tool is deployed, or to enable the comparison of completed software projects, by extracting design metrics from UML models reverse engineered from the implemented source code.;The tool is able to derive the error propagation of metrics from test XMI files created from UML sequence and state diagrams and from reverse engineered Java source code. However, variation was observed between the XMI representations generated by different software design tools, limiting the ability of the tool to process XMI from all sources. Furthermore, it was noted that subtle differences between UML design representations might have a marked effect on the quality of metrics derived.;In conclusion in order to validate the usefulness of these metrics that can be extracted from XMI files it would be useful to follow well-documented design projects throughout the total design and implementation process. Alternatively, the tool might be used to compare metrics from well-matched design implementations. In either case design metrics will only be of true value to software engineers if they can be associated empirically with a validated measure of system quality

    Software quality attribute measurement and analysis based on class diagram metrics

    Get PDF
    Software quality measurement lies at the heart of the quality engineering process. Quality measurement for object-oriented artifacts has become the key for ensuring high quality software. Both researchers and practitioners are interested in measuring software product quality for improvement. It has recently become more important to consider the quality of products at the early phases, especially at the design level to ensure that the coding and testing would be conducted more quickly and accurately. The research work on measuring quality at the design level progressed in a number of steps. The first step was to discover the correct set of metrics to measure design elements at the design level. Chidamber and Kemerer (C&K) formulated the first suite of OO metrics. Other researchers extended on this suite and provided additional metrics. The next step was to collect these metrics by using software tools. A number of tools were developed to measure the different suites of metrics; some represent their measurements in the form of ordinary numbers, others represent them in 3D visual form. In recent years, researchers developed software quality models which went a bit further by computing quality attributes from collected design metrics. In this research we extended on the software quality modelers’ work by adding a quality attribute prioritization scheme and a design metric analysis layer. Our work is all focused on the class diagram, the most fundamental constituent in any object oriented design. Using earlier researchers’ work, we extract a class diagram’s metrics and compute its quality attributes. We then analyze the results and inform the user. We present our figures and observations in the form of an analysis report. Our target user could be a project manager or a software quality engineer or a developer who needs to improve the class diagram’s quality. We closely examine the design metrics that affect quality attributes. We pinpoint the weaknesses in the class diagram, based on these metrics, inform the user about the problems that emerged from these classes, and advice him/her as to how he/she can go about improving the overall design quality. We consider the six basic quality attributes: “Reusability”, “Functionality”, “Understandability”, “Flexibility”, “Extendibility”, and “Effectiveness” of the whole class diagram. We allow the user to set priorities on these quality attributes in a sequential manner based on his/her requirements. Using a geometric series, we calculate a weighted average value for the arranged list of quality attributes. This weighted average value indicates the overall quality of the product, the class diagram. Our experimental work gave us much insight into the meanings and dependencies between design metrics and quality attributes. This helped us refine our analysis technique and give more concrete observations to the user

    MIT SchMUSE: Class-Based Remote Delegation in a Capricious Distributed Environment

    Get PDF
    MIT SchMUSE (pronounced "shmooz") is a concurrent, distributed, delegation-based object-oriented interactive environment with persistent storage. It is designed to run in a "capricious" network environment, where servers can migrate from site to site and can regularly become unavailable. Our design introduces a new form of unique identifiers called "globally unique tickets" that provide globally unique time/space stamps for objects and classes without being location specific. Object location is achieved by a distributed hierarchical lazy lookup mechanism that we call "realm resolution." We also introduce a novel mechanism called "message deferral" for enhanced reliability in the face of remote delegation. We conclude with a comparison to related work and a projection of future work on MIT SchMUSE
    corecore