1,559 research outputs found

    Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain

    Get PDF
    [EN]Unmanned Aerial Vehicles (UAVs) offer great flexibility in acquiring images in inaccessible study areas, which are then processed with stereo-matching techniques through Structure-from-Motion (SfM) algorithms. This procedure allows generating high spatial resolution 3D point clouds. The high accuracy of these 3D models allows the production of detailed snow depth distribution maps through the comparison of point clouds from different dates. In this way, UAVs allow monitoring of remote areas that were not achievable previously. The large number of works evaluating this novel technique has not, to date, conducted a systematic evaluation of concurrent snowpack observations with different UAV devices. Taking into account this, and also bearing in mind that potential users of this technique may be interested in exploiting ready-to-use commercial devices, we conducted an evaluation of the snow depth distribution maps with different commercial UAVs. During the 2018-19 snow season, two multi-rotors (Parrot Anafi and DJI Mavic Pro2) and one fixed-wing device (SenseFly eBee plus) were used on three different dates over a small test area (5 ha) within Izas Experimental Catchment in the Central Pyrenees. Simultaneously, snowpack distribution was retrieved with a Terrestrial Laser Scanner (TLS, RIEGL LPM-321) and was considered as ground truth. Three different georeferencing methods (Ground Control Points, ICP algorithm over snow-free areas and RTK-GPS positioning) were tested, showing equivalent performances under optimum illumination conditions. Additionally, for the three acquisition dates, both multi-rotors were flown at two distinct altitudes (50 and 75 m) to evaluate impact on the obtained snow depth maps. The evaluation with the TLS showed an equivalent performance of the two multi-rotors, with mean RMSE below 0.23 m and maximum volume deviations of less than 5%. Flying altitudes did not show significant differences in the obtained maps. These results were obtained under contrasted snow surface characteristics. This study reveals that under good illumination conditions and in relatively small areas, affordable commercial UAVs provide reliable estimations of snow distribution compared to more sophisticated and expensive close-range remote sensing techniques. Results obtained under overcast skies were poor, demonstrating that UAV observations require clear-sky conditions and acquisitions around noon to guarantee a homogenous illumination of the study area.This work was supported by the research projects of the Spanish Ministry of Economy and Competitiveness projects "El papel de la nieve en la hidrologia de la peninsula iberica y su respuesta a procesos de cambio global-CGL2017-82216-R" and the JPI-Climate co-funded call of the European Commission and INDECIS and CROSSDRO which are part of ERA4CS, and ERA-NET. Authors do not have any conflict of interest.). J. Revuelto is supported by a "Juan de la Cierva Incorporacion" postdoctoral fellow of the Spanish Ministry of Science, Innovation and Universities (Grant IJC2018-036260-I). I. Vidaller is supported by the Grant FPU18/04978 and is studying in the PhD program in the University of Zaragoza (Earth Science Department)

    Archaeological site monitoring: UAV photogrammetry can be an answer

    Get PDF
    During archaeological excavations it is important to monitor the new excavated areas and findings day by day in order to be able to plan future excavation activities. At present, this daily activity is usually performed by using total stations, which survey the changes of the archaeological site: the surveyors are asked to produce day by day draft plans and sections which allow archaeologists to plan their future activities. The survey is realized during the excavations or just at the end of every working day and drawings have to be produced as soon as possible in order to allow the comprehension of the work done and to plan the activities for the following day. By using this technique, all the measurements, even those not necessary for the day after, have to be acquired in order to avoid a ‘loss of memory'. A possible alternative to this traditional approach is aerial photogrammetry, if the images can be acquired quickly and at a taken distance able to guarantee the necessary accuracy of a few centimeters. Today the use of UAVs (Unmanned Aerial Vehicles) can be considered a proven technology able to acquire images at distances ranging from 4 m up to 20 m: and therefore as a possible monitoring system to provide the necessary information to the archaeologists day by day. The control network, usually present at each archaeological site, can give the stable control points useful for orienting a photogrammetric block acquired by using an UAV equipped with a calibrated digital camera and a navigation control system able to drive the aircraft following a pre-planned flight scheme. Modern digital photogrammetric software can solve for the block orientation and generate a DSM automatically, allowing rapid orthophoto generation and the possibility of producing sections and plans. The present paper describes a low cost UAV system realized by the research group of the Politecnico di Torino and tested on a Roman villa archaeological site located in Aquileia (Italy), a well-known UNESCO WHL site. The results of automatic orientation and orthophoto production are described in terms of their accuracy and the completeness of information guaranteed for archaeological site excavation managemen

    ObjectFlow: A Descriptor for Classifying Traffic Motion

    Get PDF
    Abstract—We present and evaluate a novel scene descriptor for classifying urban traffic by object motion. Atomic 3D flow vectors are extracted and compensated for the vehicle’s egomo-tion, using stereo video sequences. Votes cast by each flow vector are accumulated in a bird’s eye view histogram grid. Since we are directly using low-level object flow, no prior object detection or tracking is needed. We demonstrate the effectiveness of the proposed descriptor by comparing it to two simpler baselines on the task of classifying more than 100 challenging video sequences into intersection and non-intersection scenarios. Our experiments reveal good classification performance in busy traffic situations, making our method a valuable complement to traditional approaches based on lane markings. I

    Road environment modeling using robust perspective analysis and recursive Bayesian segmentation

    Get PDF
    Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios

    Computer hardware and software for robotic control

    Get PDF
    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems

    Improved full-waveform inversion for seismic data in the presence of noise based on the K-support norm

    Full text link
    Full-waveform inversion (FWI) is known as a seismic data processing method that achieves high-resolution imaging. In the inversion part of the method that brings high resolution in finding a convergence point in the model space, a local numerical optimization algorithm minimizes the objective function based on the norm using the least-square form. Since the norm is sensitive to outliers and noise, the method may often lead to inaccurate imaging results. Thus, a new regulation form with a more practical relaxation form is proposed to solve the overfitting drawback caused by the use of the norm,, namely the K-support norm, which has the form of more reasonable and tighter constraints. In contrast to the least-square method that minimizes the norm, our K-support constraints combine the and the norms. Then, a quadratic penalty method is adopted to linearize the non-linear problem to lighten the computational load. This paper introduces the concept of the K-support norm and integrates this scheme with the quadratic penalty problem to improve the convergence and robustness against background noise. In the numerical example, two synthetic models are tested to clarify the effectiveness of the K-support norm by comparison to the conventional norm with noisy data set. Experimental results indicate that the modified FWI based on the new regularization form effectively improves inversion accuracy and stability, which significantly enhances the lateral resolution of depth inversion even with data with a low signal-to-noise ratio (SNR).Comment: 54 pages, 21 figure
    corecore