335 research outputs found

    Biplane Fluoroscopy for Hindfoot Motion Analysis during Gait: A Model-based Evaluation

    Get PDF
    The purpose of this study was to quantify the accuracy and precision of a biplane fluoroscopy system for model-based tracking of in vivo hindfoot motion during over-ground gait. Gait was simulated by manually manipulating a cadaver foot specimen through a biplane fluoroscopy system attached to a walkway. Three 1.6-mm diameter steel beads were implanted into the specimen to provide marker-based tracking measurements for comparison to model-based tracking. A CT scan was acquired to define a gold standard of implanted bead positions and to create 3D models for model-based tracking. Static and dynamic trials manipulating the specimen through the capture volume were performed. Marker-based tracking error was calculated relative to the gold standard implanted bead positions. The bias, precision, and root-mean-squared (RMS) error of model-based tracking was calculated relative to the marker-based measurements. The overall RMS error of the model-based tracking method averaged 0.43 ± 0.22 mm and 0.66 ± 0.43° for static and 0.59 ± 0.10 mm and 0.71 ± 0.12° for dynamic trials. The model-based tracking approach represents a non-invasive technique for accurately measuring dynamic hindfoot joint motion during in vivo, weight bearing conditions. The model-based tracking method is recommended for application on the basis of the study results

    Assessment of Normal Knee Kinematics Using High-Speed Stereo-Radiography System

    Get PDF
    The measurement of dynamic joint kinematics in vivo is important in order to understand the effects of joint injuries and diseases as well as for evaluating the treatment effectiveness. Quantification of knee motion is essential for assessment of joint function for diagnosis of pathology, such as tracking and progression of osteoarthritis and evaluation of outcome following conservative or surgical treatment. Total knee arthroplasty (TKA) is an invasive treatment for arthritic pain and functional disability and it is used for deformed joint replacement with implants in order to restore joint alignment. It is important to describe knee kinematics in healthy individuals for comparison in diagnosis of pathology and understanding treatment to restore normal function. However measuring the in vivo dynamic biomechanics in 6 degrees of freedom with an accuracy that is acceptable has been shown to be technically challenging. Skin marker based methods, commonly used in human movement analysis, are still prone to large errors produced by soft tissue artifacts. Thus, great deal of research has been done to obtain more accurate data of the knee joint by using other measuring techniques like dual plane fluoroscopy. The goal of this thesis is to use high-speed stereo radiography (HSSR) system for measuring joint kinematics in healthy older adults performing common movements of daily living such as straight walking and during higher demand activities of pivoting and step descending in order to establish a useful baseline for the envelope of healthy knee motion for subsequent comparison with patients with TKA. Prior to data collection, validation and calibration techniques as well as dose estimations were mandatory for the successful accomplishment of this study

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen

    Biplanar Fluoroscopic Analysis of in vivo Hindfoot Kinematics During Ambulation

    Get PDF
    The overall goal of this project was to develop and validate a biplanar fluoroscopic system and integrated software to assess hindfoot kinematics. Understanding the motion of the foot and ankle joints may lead to improved treatment methods in persons with foot and ankle pathologies. During gait analysis, skin markers are placed on the lower extremities, which are defined as four rigid-body segments with three joints representing the hip, knee and ankle. This method introduces gross assumptions on the foot and severely limits the analysis of in depth foot mechanics. Multi-segmental models have been developed, but are susceptible to skin motion artifact error. Intra-cortical bone pins studies provide higher accuracy, but are invasive. This dissertation developed and validated a noninvasive biplane fluoroscopy system to overcome the skin motion artifacts and rigid-body assumptions of conventional foot motion analysis. The custom-built biplane fluoroscopy system was constructed from two fluoroscopes separated by 60°, attached to a custom walkway with an embedded force plate. Open source software was incorporated to correct the image distortion and calibrate the capture volume. This study was the first that quantified the cross-scatter contamination in a biplane fluoroscopic system and its effects on the accuracy of marker-based tracking. A cadaver foot study determined the static and dynamic error of the biplane fluoroscopic system using both marker-based and model-based tracking algorithms. The study also developed in vivo 3D kinematic models of the talocrural and subtalar joints during the stance phase of gait. Cross-scatter degradation showed negligible effects in the smallest phantom, suggesting negligible motion tracking error due to cross scatter for distal extremities. Marker-based tracking error had a maximum absolute mean error of 0.21 (± 0.15) in dynamic trials. Model-based tracking results compared to marker-based had an overall dynamic RMS average error of 0.59 mm. Models were developed using custom algorithms to determine talocrural and subtalar joint 3D kinematics. The models offer a viable, noninvasive method suitable for quantifying hindfoot kinematics. Patients with a variety of adult and pediatric conditions which affect foot and ankle dynamics during walking may benefit from this work

    Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints

    Get PDF
    BACKGROUND Currently the clinical standard for measuring the motion of the bones in knee joints with sufficient precision involves implanting tantalum beads into the bones. These beads appear as high intensity features in radiographs and can be used for precise kinematic measurements. This procedure imposes a strong coupling between accuracy and invasiveness. In this paper, a tri-plane B-mode ultrasound (US) based non-invasive approach is proposed for use in kinematic analysis of knee joints in 3D space. METHODS The 3D analysis is performed using image processing procedures on the 2D US slices. The novelty of the proposed procedure and its applicability to the unconstrained 3D kinematic analysis of knee joints is outlined. An error analysis for establishing the method's feasibility is included for different artificial compositions of a knee joint phantom. Some in-vivo and in-vitro scans are presented to demonstrate that US scans reveal enough anatomical details, which further supports the experimental setup used using knee bone phantoms. RESULTS The error between the displacements measured by the registration of the US image slices and the true displacements of the respective slices measured using the precision mechanical stages on the experimental apparatus is evaluated for translation and rotation in two simulated environments. The mean and standard deviation of errors are shown in tabular form. This method provides an average measurement precision of less than 0.1 mm and 0.1 degrees, respectively. CONCLUSION In this paper, we have presented a novel non-invasive approach to measuring the motion of the bones in a knee using tri-plane B-mode ultrasound and image registration. In our study, the image registration method determines the position of bony landmarks relative to a B-mode ultrasound sensor array with sub-pixel accuracy. The advantages of our proposed system over previous techniques are that it is non-invasive, does not require the use of ionizing radiation and can be used conveniently if miniaturized.This work has been supported by School of Engineering & IT, UNSW Canberra, under Research Publication Fellowship

    Fluoroscopy-based tracking of femoral kinematics with statistical shape models

    Get PDF
    Precise knee kinematics assessment helps to diagnose knee pathologies and to improve the design of customized prosthetic components. The first step in identifying knee kinematics is to assess the femoral motion in the anatomical frame. However, no work has been done on pathological femurs, whose shape can be highly different from healthy ones

    Markerless measurement techniques for motion analysis in sports science

    Get PDF
    Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced to the application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and calculating joint angles. The method was used to measure walking and jumping movements primarily because of the experimental conditions and mainly to detect the data of lower limb joints

    Comparison of in vivo human knee joint kinematics using axodes

    Get PDF
    The human knee is of particular interest because of its importance in mobility. Pain and stability can be directly related to the motion, or kinematics, of the knee. Many studies have been conducted to quantify human knee kinematics, both in vitro and in vivo. One of the inherent issues with in vivo, skin mounted measurement systems is that they do not account for soft tissue artifact. Compensation for soft tissue artifact has been a difficult challenge for skin mounted tracking systems and has not yet been achieved. Therefore, bone mounted skeletal pins were chosen as the method of gathering kinematic data for this study. Mounting bone pins is not the quintessential method to study motion due to its invasive nature; nevertheless, it provides a great amount of trustworthy, useful insight. Murphy conducted an in vivo experiment to capture the 3D kinematics of the normal human knee. The kinematic data were used to find the Instantaneous Screw Axis or Instantaneous Helical Axes (IHA). If progressive IHA’s are plotted on the same plot, the surface that is created is called the moving axode of the motion. Several degrees of freedom are needed to accurately describe the kinematics of the human knee during normal movement. The current study further analyzes the data that Murphy reported in 1990. The goal is to find an effective way to express kinematic information in a coordinate system-independent manner so that comparison is meaningful and feasible between gait/ROM trials, subjects, and knee repair/replacement methods. Axodes were used to compare knee kinematics, trial to trial, for gait, range of motion (ROM), and pivot step. It was established that 6 independent screws are required to fully describe the motion during gait. Thus, the knee behaves like a 6 DOF mechanism during gait and, therefore, two-, three-, four-, or five-screw system models are insufficient to adequately and uniquely define the screw system. Screw invariants were found to be a viable option of understanding knee kinematics. Axodes were plotted with pre-stance, stance phase, and post-stance phase indicated. Screw invariants, pitch and moment, were plotted as a function of flexion angle
    corecore