5,781 research outputs found

    Self-organization of Nodes using Bio-Inspired Techniques for Achieving Small World Properties

    Full text link
    In an autonomous wireless sensor network, self-organization of the nodes is essential to achieve network wide characteristics. We believe that connectivity in wireless autonomous networks can be increased and overall average path length can be reduced by using beamforming and bio-inspired algorithms. Recent works on the use of beamforming in wireless networks mostly assume the knowledge of the network in aggregation to either heterogeneous or hybrid deployment. We propose that without the global knowledge or the introduction of any special feature, the average path length can be reduced with the help of inspirations from the nature and simple interactions between neighboring nodes. Our algorithm also reduces the number of disconnected components within the network. Our results show that reduction in the average path length and the number of disconnected components can be achieved using very simple local rules and without the full network knowledge.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    Self-Synchronization in Duty-cycled Internet of Things (IoT) Applications

    Full text link
    In recent years, the networks of low-power devices have gained popularity. Typically these devices are wireless and interact to form large networks such as the Machine to Machine (M2M) networks, Internet of Things (IoT), Wearable Computing, and Wireless Sensor Networks. The collaboration among these devices is a key to achieving the full potential of these networks. A major problem in this field is to guarantee robust communication between elements while keeping the whole network energy efficient. In this paper, we introduce an extended and improved emergent broadcast slot (EBS) scheme, which facilitates collaboration for robust communication and is energy efficient. In the EBS, nodes communication unit remains in sleeping mode and are awake just to communicate. The EBS scheme is fully decentralized, that is, nodes coordinate their wake-up window in partially overlapped manner within each duty-cycle to avoid message collisions. We show the theoretical convergence behavior of the scheme, which is confirmed through real test-bed experimentation.Comment: 12 Pages, 11 Figures, Journa

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    Full text link
    It is highly desirable and challenging for a wireless ad hoc network to have self-organization properties in order to achieve network wide characteristics. Studies have shown that Small World properties, primarily low average path length and high clustering coefficient, are desired properties for networks in general. However, due to the spatial nature of the wireless networks, achieving small world properties remains highly challenging. Studies also show that, wireless ad hoc networks with small world properties show a degree distribution that lies between geometric and power law. In this paper, we show that in a wireless ad hoc network with non-uniform node density with only local information, we can significantly reduce the average path length and retain the clustering coefficient. To achieve our goal, our algorithm first identifies logical regions using Lateral Inhibition technique, then identifies the nodes that beamform and finally the beam properties using Flocking. We use Lateral Inhibition and Flocking because they enable us to use local state information as opposed to other techniques. We support our work with simulation results and analysis, which show that a reduction of up to 40% can be achieved for a high-density network. We also show the effect of hopcount used to create regions on average path length, clustering coefficient and connectivity.Comment: Accepted for publication: Special Issue on Security and Performance of Networks and Clouds (The Computer Journal

    Node placement optimization using extended virtual force and cuckoo search algorithm in wireless sensor network

    Get PDF
    Node placement is one of the fundamental issues that affects the performance of coverage and connectivity in Wireless Sensor Network (WSN). In a large scale WSN, sensor nodes are deployed randomly where they are scattered too close or far apart from each other. This random deployment causes issues such as coverage hole, overlapping and connectivity failure that contributes to the performance of coverage and connectivity of WSN. Therefore, node placement model is develop to find the optimal node placement in order to maintain the coverage and guaranteed the connectivity in random deployment. The performance of Extended Virtual Force-Based Algorithm (EVFA) and Cuckoo Search (CS) algorithm are evaluated and EVFA shows the improvement of coverage area and exhibits a guaranteed connectivity compared to CS algorithm. Both algorithms have their own strength in improving the coverage performance. The EVFA approach can relocate the sensor nodes using a repulsive and attractive force after initial deployment and CS algorithm is more efficient in exploring the search of maximum coverage area in random deployment. This study proposed Extended Virtual Force and Cuckoo Search (EVFCS) algorithm with a combination of EVFA and CS algorithm to find an optimal node placement. A series of experimental studies on evaluation of proposed algorithm were conducted within simulated environment. In EVFCS, the algorithm searches the best value of threshold distance and relocated the new position of sensor nodes. The result suggested 18.212m is the best threshold distance that maximizes the coverage area. It also minimizes the problems of coverage hole and overlapping while guaranteeing a reasonable connectivity quality. It proved that the proposed EVFCS outperforms the EVFA approach and achieved a significant improvement in coverage area and guaranteed connectivity. The implementation of the EVFCS improved the problems of initial random deployment

    Distributed Estimation and Control of Algebraic Connectivity over Random Graphs

    Full text link
    In this paper we propose a distributed algorithm for the estimation and control of the connectivity of ad-hoc networks in the presence of a random topology. First, given a generic random graph, we introduce a novel stochastic power iteration method that allows each node to estimate and track the algebraic connectivity of the underlying expected graph. Using results from stochastic approximation theory, we prove that the proposed method converges almost surely (a.s.) to the desired value of connectivity even in the presence of imperfect communication scenarios. The estimation strategy is then used as a basic tool to adapt the power transmitted by each node of a wireless network, in order to maximize the network connectivity in the presence of realistic Medium Access Control (MAC) protocols or simply to drive the connectivity toward a desired target value. Numerical results corroborate our theoretical findings, thus illustrating the main features of the algorithm and its robustness to fluctuations of the network graph due to the presence of random link failures.Comment: To appear in IEEE Transactions on Signal Processin

    Trust-based secure clustering in WSN-based intelligent transportation systems

    Get PDF
    Increasing the number of vehicles on roads leads to congestion and safety problems. Wireless Sensor Network (WSN) is a promising technology providing Intelligent Transportation Systems (ITS) to address these problems. Usually, WSN-based applications, including ITS ones, incur high communication overhead to support efficient connectivity and communication activities. In the ITS environment, clustering would help in addressing the high communication overhead problem. In this paper, we introduce a bio-inspired and trust-based cluster head selection approach for WSN adopted in ITS applications. A trust model is designed and used to compute a trust level for each node and the Bat Optimization Algorithm (BOA) is used to select the cluster heads based on three parameters: residual energy, trust value and the number of neighbors. The simulation results showed that our proposed model is energy efficient (i.e., its power consumption is more efficient than many well-known clustering algorithm such as LEACH, SEP, and DEEC under homogeneous and heterogeneous networks). In addition, the results demonstrated that our proposed model achieved longer network lifetime, i.e., nodes are kept alive longer than what LEACH, SEP and DEEC can achieve. Moreover, the the proposed model showed that the average trust value of selected Cluster Head (CH) is high under different percentage (30% and 50%) of malicious nodes

    Self-Organized Hybrid Wireless Sensor Network for Finding Randomly Moving Target in Unknown Environment

    Get PDF
    Unknown target search, in an unknown environment, is a complex problem in Wireless Sensor Network (WSN). It does not have a linear solution when target’s location and searching space is unknown. For the past few years, many researchers have invented novel techniques for finding a target using either Static Sensor Node (SSN) or Mobile Sensor Node (MSN) in WSN i.e. Hybrid WSN. But there is a lack of research to find a solution using hybrid WSN. In the current research, the problem has been addressed mostly using non-biological techniques. Due to its complexity and having a non-linear solution, Bio-inspired techniques are most suited to solve the problem. This paper proposes a solution for searching of randomly moving target in unknown area using only Mobile sensor nodes and combination of both Static and Mobile sensor nodes. In proposed technique coverage area is determined and compared. To perform the work, novel algorithms like MSNs Movement Prediction Algorithm (MMPA), Leader Selection Algorithm (LSA), Leader’s Movement Prediction Algorithm (LMPA) and follower algorithm are implemented. Simulation results validate the effectiveness of proposed work. Through the result, it is shown that proposed hybrid WSN approach with less number of sensor nodes (combination of Static and Mobile sensor nodes) finds target faster than only MSN approach

    Concepts and evolution of research in the field of wireless sensor networks

    Full text link
    The field of Wireless Sensor Networks (WSNs) is experiencing a resurgence of interest and a continuous evolution in the scientific and industrial community. The use of this particular type of ad hoc network is becoming increasingly important in many contexts, regardless of geographical position and so, according to a set of possible application. WSNs offer interesting low cost and easily deployable solutions to perform a remote real time monitoring, target tracking and recognition of physical phenomenon. The uses of these sensors organized into a network continue to reveal a set of research questions according to particularities target applications. Despite difficulties introduced by sensor resources constraints, research contributions in this field are growing day by day. In this paper, we present a comprehensive review of most recent literature of WSNs and outline open research issues in this field
    • …
    corecore