765 research outputs found

    Towards Anchoring Self-Learned Representations to Those of Other Agents

    Get PDF
    In the future, robots will support humans in their every day activities. One particular challenge that robots will face is understanding and reasoning about the actions of other agents in order to cooperate effectively with humans. We propose to tackle this using a developmental framework, where the robot incrementally acquires knowledge, and in particular 1) self-learns a mapping between motor commands and sensory consequences, 2) rapidly acquires primitives and complex actions by verbal descriptions and instructions from a human partner, 3) discovers correspondences between the robots body and other articulated objects and agents, and 4) employs these correspondences to transfer the knowledge acquired from the robots point of view to the viewpoint of the other agent. We show that our approach requires very little a-priori knowledge to achieve imitation learning, to find correspondent body parts of humans, and allows taking the perspective of another agent. This represents a step towards the emergence of a mirror neuron like system based on self-learned representations

    LGMD based neural network for automatic collision detection

    Get PDF
    Real-time collision detection in dynamic scenarios is a hard task if the algorithms used are based on conventional techniques of computer vision, since these are computationally complex and, consequently, time-consuming. On the other hand, bio-inspired visual sensors are suitable candidates for mobile robot navigation in unknown environments, due to their computational simplicity. The Lobula Giant Movement Detector (LGMD) neuron, located in the locust optic lobe, responds selectively to approaching objects. This neuron has been used to develop bio-inspired neural networks for collision avoidance. In this work, we propose a new LGMD model based on two previous models, in order to improve over them by incorporating other algorithms. To assess the real-time properties of the proposed model, it was applied to a real robot. Results shown that the LGMD neuron model can robustly support collision avoidance in complex visual scenarios.(undefined

    A historical perspective of algorithmic lateral inhibition and accumulative computation in computer vision

    Get PDF
    Certainly, one of the prominent ideas of Professor José Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research has been that any bottom-up organization may be made operational using two biologically inspired methods called ?algorithmic lateral inhibition?, a generalization of lateral inhibition anatomical circuits, and ?accumulative computation?, a working memory related to the temporal evolution of the membrane potential. This paper is dedicated to the computational formulation of both methods. Finally, all of the works of our group related to this methodological approximation are mentioned and summarized, showing that all of them support the validity of this approximation

    Knowledge modelling for the motion detection task

    Get PDF
    In this article knowledge modelling at the knowledge level for the task of moving objects detection in image sequences is introduced. Three items have been the focus of the approach: (1) the convenience of knowledge modelling of tasks and methods in terms of a library of reusable components and in advance to the phase of operationalization of the primitive inferences; (2) the potential utility of looking for inspiration in biology; (3) the convenience of using these biologically inspired problem-solving methods (PSMs) to solve motion detection tasks. After studying a summary of the methods used to solve the motion detection task, the moving targets in indefinite sequences of images detection task is approached by means of the algorithmic lateral inhibition (ALI) PSM. The task is decomposed in four subtasks: (a) thresholded segmentation; (b) motion detection; (c) silhouettes parts obtaining; and (d) moving objects silhouettes fusion. For each one of these subtasks, first, the inferential scheme is obtained and then each one of the inferences is operationalized. Finally, some experimental results are presented along with comments on the potential value of our approach

    Cognitive architecture of perceptual organization: from neurons to gnosons

    Get PDF
    What, if anything, is cognitive architecture and how is it implemented in neural architecture? Focusing on perceptual organization, this question is addressed by way of a pluralist approach which, supported by metatheoretical considerations, combines complementary insights from representational, connectionist, and dynamic systems approaches to cognition. This pluralist approach starts from a representationally inspired model which implements the intertwined but functionally distinguishable subprocesses of feedforward feature encoding, horizontal feature binding, and recurrent feature selection. As sustained by a review of neuroscientific evidence, these are the subprocesses that are believed to take place in the visual hierarchy in the brain. Furthermore, the model employs a special form of processing, called transparallel processing, whose neural signature is proposed to be gamma-band synchronization in transient horizontal neural assemblies. In neuroscience, such assemblies are believed to mediate binding of similar features. Their formal counterparts in the model are special input-dependent distributed representations, called hyperstrings, which allow many similar features to be processed in a transparallel fashion, that is, simultaneously as if only one feature were concerned. This form of processing does justice to both the high combinatorial capacity and the high speed of the perceptual organization process. A naturally following proposal is that those temporarily synchronized neural assemblies are “gnosons”, that is, constituents of flexible self-organizing cognitive architecture in between the relatively rigid level of neurons and the still elusive level of consciousness

    Revisiting algorithmic lateral inhibition and accumulative computation

    Get PDF
    Certainly, one of the prominent ideas of Professor Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research of Professor Mira and our team at University of Castilla-La Mancha has been that any bottom-up organization may be made operational using two biologically inspired methods called ?algorithmic lateral inhibition?, a generalization of lateral inhibition anatomical circuits, and ?accumulative computation?, a working memory related to the temporal evolution of the membrane potential. This paper is dedicated to the computational formulations of both methods, which have led to quite efficient solutions of problems related to motion-based computer vision
    corecore