3,240 research outputs found

    A bio-inspired scheduling scheme for wireless sensor networks

    Get PDF
    Author name used in this publication: Chi K. TseAuthor name used in this publication: Francis C. M. LauRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A Bio-Inspired Scheduling Scheme for Wireless Sensor Networks

    Full text link
    Sensor networks with a large amount of sensor nodes usually have high redundancy in sensing coverage. The network lifetime can be further extended by proper scheduling and putting unnecessary sensor nodes into sleep mode. In this paper a bio-inspired scheduling scheme is proposed. The proposed scheme is a kind of adaptive "selective on-off" scheduling scheme which uses only local information for making scheduling decisions. The scheme is evaluated in terms of target 3-coverage hit-rate, averaged detection delay, and energy consumption per successful target detection. Simulation results show that our proposed scheme can reduce energy consumption by as much as 2/3 when comparing with other generic scheduling schemes while maintaining the detection delay and target hit-rate at a comparable level. Optimization of the network lifetime and other performances is possible by adjusting some parameters.Department of Electronic and Information EngineeringAuthor name used in this publication: Chi K. TseAuthor name used in this publication: Francis C. M. LauRefereed conference pape

    Self-Synchronization in Duty-cycled Internet of Things (IoT) Applications

    Full text link
    In recent years, the networks of low-power devices have gained popularity. Typically these devices are wireless and interact to form large networks such as the Machine to Machine (M2M) networks, Internet of Things (IoT), Wearable Computing, and Wireless Sensor Networks. The collaboration among these devices is a key to achieving the full potential of these networks. A major problem in this field is to guarantee robust communication between elements while keeping the whole network energy efficient. In this paper, we introduce an extended and improved emergent broadcast slot (EBS) scheme, which facilitates collaboration for robust communication and is energy efficient. In the EBS, nodes communication unit remains in sleeping mode and are awake just to communicate. The EBS scheme is fully decentralized, that is, nodes coordinate their wake-up window in partially overlapped manner within each duty-cycle to avoid message collisions. We show the theoretical convergence behavior of the scheme, which is confirmed through real test-bed experimentation.Comment: 12 Pages, 11 Figures, Journa

    Distributed Time-Frequency Division Multiple Access Protocol For Wireless Sensor Networks

    Get PDF
    It is well known that biology-inspired self-maintaining algorithms in wireless sensor nodes achieve near optimum time division multiple access (TDMA) characteristics in a decentralized manner and with very low complexity. We extend such distributed TDMA approaches to multiple channels (frequencies). This is achieved by extending the concept of collaborative reactive listening in order to balance the number of nodes in all available channels. We prove the stability of the new protocol and estimate the delay until the balanced system state is reached. Our approach is benchmarked against single-channel distributed TDMA and channel hopping approaches using TinyOS imote2 wireless sensors.Comment: 4 pages, IEEE Wireless Communications Letters, to appear in 201

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    A firefly-inspired scheme for energy-efficient transmission scheduling using a self-organizing method in a wireless sensor network

    Get PDF
    Various types of natural phenomena are regarded as primary sources of information for artificial occurrences that involve spontaneous synchronization. Among the artificial occurrences that mimic natural phenomena are Wireless Sensor Networks (WSNs) and the Pulse Coupled Oscillator (PCO), which utilizes firefly synchronization for attracting mating partners. However, the PCO model was not appropriate for wireless sensor networks because sensor nodes are typically not capable to collect sensor data packets during transmission (because of packet collision and deafness). To avert these limitations, this study proposed a self-organizing time synchronization algorithm that was adapted from the traditional PCO model of fireflies flashing synchronization. Energy consumption and transmission delay will be reduced by using this method. Using the proposed model, a simulation exercise was performed and a significant improvement in energy efficiency was observed, as reflected by an improved transmission scheduling and a coordinated duty cycling and data gathering ratio. Therefore, the energy-efficient data gathering is enhanced in the proposed model than in the original PCO-based wave-traveling model. The battery lifetime of the Sensor Nodes (SNs) was also extended by using the proposed model

    Fast Desynchronization For Decentralized Multichannel Medium Access Control

    Get PDF
    Distributed desynchronization algorithms are key to wireless sensor networks as they allow for medium access control in a decentralized manner. In this paper, we view desynchronization primitives as iterative methods that solve optimization problems. In particular, by formalizing a well established desynchronization algorithm as a gradient descent method, we establish novel upper bounds on the number of iterations required to reach convergence. Moreover, by using Nesterov's accelerated gradient method, we propose a novel desynchronization primitive that provides for faster convergence to the steady state. Importantly, we propose a novel algorithm that leads to decentralized time-synchronous multichannel TDMA coordination by formulating this task as an optimization problem. Our simulations and experiments on a densely-connected IEEE 802.15.4-based wireless sensor network demonstrate that our scheme provides for faster convergence to the steady state, robustness to hidden nodes, higher network throughput and comparable power dissipation with respect to the recently standardized IEEE 802.15.4e-2012 time-synchronized channel hopping (TSCH) scheme.Comment: to appear in IEEE Transactions on Communication
    corecore