3,196 research outputs found

    Bio-inspired anatomy for autonomous DPWS-compliant automation components

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia ElectrotĂ©cnica e de ComputadoresThis thesis approaches the use of the DPWS technology to implement web-services on small devices, addresses its limitations, and explains an architecture to solve it. An approach to an autonomous device’s simple architecture was realized, using DPWS, and was called Simple DPWS. The objective was to implement/simplify some features in a device in a way that the device can work on its own. The designed architecture is based on that each component has its framework of modules, having always at least the skeleton modules communication and Event Router-Scheduler. The communication module controls all the communication between the devices and the ERS is the responsible for the other modules’ real-time communication. The DPWS toolkit offers no capability of interacting with run-time-appearing services. Thus there was a necessity to do enhancements over the DPWS toolkit to have a dynamic stub and skeleton. This service was called the dynamic service. An experience was done connecting a DPWS toolkit sample service with the corresponding hand-created dynamic service. It was used the lighting service that consists on turning a lamp ON or OFF and getting its status. A GUI was done for the application to be more user-friendly. The results were satisfactory, as the connection worked

    Improving efficiency and security of IIoT communications using in-network validation of server certificate

    Get PDF
    The use of advanced communications and smart mechanisms in industry is growing rapidly, making cybersecurity a critical aspect. Currently, most industrial communication protocols rely on the Transport Layer Security (TLS) protocol to build their secure version, providing confidentiality, integrity and authentication. In the case of UDP-based communications, frequently used in Industrial Internet of Things (IIoT) scenarios, the counterpart of TLS is Datagram Transport Layer Security (DTLS), which includes some mechanisms to deal with the high unreliability of the transport layer. However, the (D)TLS handshake is a heavy process, specially for resource-deprived IIoT devices and frequently, security is sacrificed in favour of performance. More specifically, the validation of digital certificates is an expensive process from the time and resource consumption point of view. For this reason, digital certificates are not always properly validated by IIoT devices, including the verification of their revocation status; and when it is done, it introduces an important delay in the communications. In this context, this paper presents the design and implementation of an in-network server certificate validation system that offloads this task from the constrained IIoT devices to a resource-richer network element, leveraging data plane programming (DPP). This approach enhances security as it guarantees that a comprehensive server certificate verification is always performed. Additionally, it increases performance as resource-expensive tasks are moved from IIoT devices to a resource-richer network element. Results show that the proposed solution reduces DTLS handshake times by 50–60 %. Furthermore, CPU use in IIoT devices is also reduced, resulting in an energy saving of about 40 % in such devices.This work was financially supported by the Spanish Ministry of Science and Innovation through the TRUE-5G project PID2019-108713RB-C54/AEI/10.13039/501100011033. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK Program, project REMEDY - Real tiME control and embeddeD securitY (KK-2021/00091)

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) Ăš caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilitĂ  e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi Ăš rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusivitĂ . Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacitĂ  di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attivitĂ  di pre-elaborazione la mole di dati sensoriali puĂČ facilmente sopraffare un sistema centralizzato con un’eccessiva quantitĂ  di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacitĂ  computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta Ăš stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura Ăš stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    SusTrainable: Promoting Sustainability as a Fundamental Driver in Software Development Training and Education. 2nd Teacher Training, January 23-27, 2023, Pula, Croatia. Revised lecture notes

    Full text link
    This volume exhibits the revised lecture notes of the 2nd teacher training organized as part of the project Promoting Sustainability as a Fundamental Driver in Software Development Training and Education, held at the Juraj Dobrila University of Pula, Croatia, in the week January 23-27, 2023. It is the Erasmus+ project No. 2020-1-PT01-KA203-078646 - Sustrainable. More details can be found at the project web site https://sustrainable.github.io/ One of the most important contributions of the project are two summer schools. The 2nd SusTrainable Summer School (SusTrainable - 23) will be organized at the University of Coimbra, Portugal, in the week July 10-14, 2023. The summer school will consist of lectures and practical work for master and PhD students in computing science and closely related fields. There will be contributions from Babe\c{s}-Bolyai University, E\"{o}tv\"{o}s Lor\'{a}nd University, Juraj Dobrila University of Pula, Radboud University Nijmegen, Roskilde University, Technical University of Ko\v{s}ice, University of Amsterdam, University of Coimbra, University of Minho, University of Plovdiv, University of Porto, University of Rijeka. To prepare and streamline the summer school, the consortium organized a teacher training in Pula, Croatia. This was an event of five full days, organized by Tihana Galinac Grbac and Neven Grbac. The Juraj Dobrila University of Pula is very concerned with the sustainability issues. The education, research and management are conducted with sustainability goals in mind. The contributions in the proceedings were reviewed and provide a good overview of the range of topics that will be covered at the summer school. The papers in the proceedings, as well as the very constructive and cooperative teacher training, guarantee the highest quality and beneficial summer school for all participants.Comment: 85 pages, 8 figures, 3 code listings and 1 table; editors: Tihana Galinac Grbac, Csaba Szab\'{o}, Jo\~{a}o Paulo Fernande

    Rendering real-time dashboards using a GraphQL-based UI Architecture

    Get PDF
    With the increase in the complexity of the systems being built and demand in the quality of service by the customers, developing and providing highly efficient real-time systems is one of the biggest challenges today for software enterprises. BluemixTM ─ IBM’s cloud offering implemented on Cloud Foundry, an open source “Platform as a Service” (PaaS), is an example of such a system. Currently, there are approx. 26 infrastructural services running in the background from where the data is fetched and is rendered on different dashboards of the system. However, the system suffers from performance issues. This thesis explores the performance improvements of the real-time dashboards by introducing our proposed GraphQL-based UI architecture which allows caching and asynchronous loading. The test results of this architecture’s implementation on the Bluemix Usage Dashboard show that the Real data renders 245% faster and the Switching Account 153% faster than the existing system

    A novel energy-driven computing paradigm for e-health scenarios

    Get PDF
    A first-rate e-Health system saves lives, provides better patient care, allows complex but useful epidemiologic analysis and saves money. However, there may also be concerns about the costs and complexities associated with e-health implementation, and the need to solve issues about the energy footprint of the high-demanding computing facilities. This paper proposes a novel and evolved computing paradigm that: (i) provides the required computing and sensing resources; (ii) allows the population-wide diffusion; (iii) exploits the storage, communication and computing services provided by the Cloud; (iv) tackles the energy-optimization issue as a first-class requirement, taking it into account during the whole development cycle. The novel computing concept and the multi-layer top-down energy-optimization methodology obtain promising results in a realistic scenario for cardiovascular tracking and analysis, making the Home Assisted Living a reality

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Cooperation in Wireless Ad Hoc and Sensor Networks

    Get PDF
    Ministerio de EducaciĂłn y Ciencia TIN2006-15617-C03-03 (AmbientNet)Junta de AndalucĂ­a P0-6TIC-2298 (SemiWheelNav)Junta de AndalucĂ­a P07-TIC-02476 (ARTICA
    • 

    corecore