243 research outputs found

    Efficient Side-Channel Aware Elliptic Curve Cryptosystems over Prime Fields

    Get PDF
    Elliptic Curve Cryptosystems (ECCs) are utilized as an alternative to traditional public-key cryptosystems, and are more suitable for resource limited environments due to smaller parameter size. In this dissertation we carry out a thorough investigation of side-channel attack aware ECC implementations over finite fields of prime characteristic including the recently introduced Edwards formulation of elliptic curves, which have built-in resiliency against simple side-channel attacks. We implement Joye\u27s highly regular add-always scalar multiplication algorithm both with the Weierstrass and Edwards formulation of elliptic curves. We also propose a technique to apply non-adjacent form (NAF) scalar multiplication algorithm with side-channel security using the Edwards formulation. Our results show that the Edwards formulation allows increased area-time performance with projective coordinates. However, the Weierstrass formulation with affine coordinates results in the simplest architecture, and therefore has the best area-time performance as long as an efficient modular divider is available

    A versatile Montgomery multiplier architecture with characteristic three support

    Get PDF
    We present a novel unified core design which is extended to realize Montgomery multiplication in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic curve schemes, as well as the identity-based encryption which requires a pairing computation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit representation to reduce the critical path delay. While the carry-save representation used in classical unified architectures is only good for addition and multiplication operations, the redundant signed digit representation also facilitates efficient computation of comparison and subtraction operations besides addition and multiplication. Thus, there is no need for a transformation between the redundant and the non-redundant representations of field elements, which would be required in the classical unified architectures to realize the subtraction and comparison operations. We also quantify the benefits of the unified architectures in terms of area and critical path delay. We provide detailed implementation results. The metric shows that the new unified architecture provides an improvement over a hypothetical non-unified architecture of at least 24.88%, while the improvement over a classical unified architecture is at least 32.07%

    Secure and Efficient RNS Approach for Elliptic Curve Cryptography

    Get PDF
    Scalar multiplication, the main operation in elliptic curve cryptographic protocols, is vulnerable to side-channel (SCA) and fault injection (FA) attacks. An efficient countermeasure for scalar multiplication can be provided by using alternative number systems like the Residue Number System (RNS). In RNS, a number is represented as a set of smaller numbers, where each one is the result of the modular reduction with a given moduli basis. Under certain requirements, a number can be uniquely transformed from the integers to the RNS domain (and vice versa) and all arithmetic operations can be performed in RNS. This representation provides an inherent SCA and FA resistance to many attacks and can be further enhanced by RNS arithmetic manipulation or more traditional algorithmic countermeasures. In this paper, extending our previous work, we explore the potentials of RNS as an SCA and FA countermeasure and provide an description of RNS based SCA and FA resistance means. We propose a secure and efficient Montgomery Power Ladder based scalar multiplication algorithm on RNS and discuss its SCAFA resistance. The proposed algorithm is implemented on an ARM Cortex A7 processor and its SCA-FA resistance is evaluated by collecting preliminary leakage trace results that validate our initial assumptions

    Tamper-Resistant Arithmetic for Public-Key Cryptography

    Get PDF
    Cryptographic hardware has found many uses in many ubiquitous and pervasive security devices with a small form factor, e.g. SIM cards, smart cards, electronic security tokens, and soon even RFIDs. With applications in banking, telecommunication, healthcare, e-commerce and entertainment, these devices use cryptography to provide security services like authentication, identification and confidentiality to the user. However, the widespread adoption of these devices into the mass market, and the lack of a physical security perimeter have increased the risk of theft, reverse engineering, and cloning. Despite the use of strong cryptographic algorithms, these devices often succumb to powerful side-channel attacks. These attacks provide a motivated third party with access to the inner workings of the device and therefore the opportunity to circumvent the protection of the cryptographic envelope. Apart from passive side-channel analysis, which has been the subject of intense research for over a decade, active tampering attacks like fault analysis have recently gained increased attention from the academic and industrial research community. In this dissertation we address the question of how to protect cryptographic devices against this kind of attacks. More specifically, we focus our attention on public key algorithms like elliptic curve cryptography and their underlying arithmetic structure. In our research we address challenges such as the cost of implementation, the level of protection, and the error model in an adversarial situation. The approaches that we investigated all apply concepts from coding theory, in particular the theory of cyclic codes. This seems intuitive, since both public key cryptography and cyclic codes share finite field arithmetic as a common foundation. The major contributions of our research are (a) a generalization of cyclic codes that allow embedding of finite fields into redundant rings under a ring homomorphism, (b) a new family of non-linear arithmetic residue codes with very high error detection probability, (c) a set of new low-cost arithmetic primitives for optimal extension field arithmetic based on robust codes, and (d) design techniques for tamper resilient finite state machines

    Elliptical Curve Digital Signatures Algorithm

    Get PDF
    Elliptical digital signatures algorithm provides security services for resource constrained embedded devices. The ECDSA level security can be enhanced by several parameters as parameter key size and the security level of ECDSA elementary modules such as hash function, elliptic curve point multiplication on koblitz curve which is used to compute public key and a pseudo-random generator which generates key pair generation. This paper describes novel security approach on authentication schemes as a modification of ECDSA scheme. This paper provides a comprehensive survey of recent developments on elliptic curve digital signatures approaches. The survey of ECDSA involves major issues like security of cryptosystem, RFID-tag authentication, Montgomery multiplication over binary fields, Scaling techniques, Signature generation ,signature verification, point addition and point doubling of the different coordinate system and classification. DOI: 10.17762/ijritcc2321-8169.150318

    Algorithm based on Booth's Encoding Pattern for Fast Scalar Point Multiplication for ECC in Wireless Sensor Networks

    Get PDF
    With the rapid increase of small devices and its usage, a better suitable security providing mechanism must be incorported keeping the resource constraints of the devices in mind. Elliptic Curve Cryptography (ECC) serves the best and highly suitable for wireless sensor Networks (WSN) in providing security because of its smaller key size and its high strength of security against Elliptic Curve Discrete Logarithm Problem (ECDLP) than any other public-Key Cryptographic Systems. But there is a scope to reduce key calculation time to meet the potential appli- cations, without compromising in level of security in particular for wireless sensor networks. Scalar Multiplication is the costliest operation among the operations in Elliptic Curve Cryptography which takes 80% of key calculation time on WSN motes. This research proposes an algorithm based on Booth's Encoding Pattern, o®ering minimal Hamming Weight and signi¯cantly reduces the computational cost of scalar multiplication. Simulation results has proved that the Booth's en-coded pattern performs better over the existing techniques if there are atleast 46% number of 1's in the key on an average

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process
    corecore