1,231 research outputs found

    Binary Fruit Fly Swarm Algorithms for the Set Covering Problem

    Get PDF
    Currently, the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems. In this sense, metaheuristics have been a common trend in the field in order to design approaches to solve them successfully. Thus, a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments. Following the No Free Lunch theorem, we are interested in testing the performance of the Fruit Fly Algorithm, this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces, based on the foraging behavior of the fruit fly, which usually has much better sensory perception of smell and vision than any other species. On the other hand, the Set Coverage Problem is a well-known NP-hard problem with many practical applications, including production line balancing, utility installation, and crew scheduling in railroad and mass transit companies. In this paper, we propose different binarization methods for the Fruit Fly Algorithm, using S-shaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space. We are motivated with this approach, because in this way we can deliver to future researchers interested in this area, a way to be able to work with continuous metaheuristics in binary domains. This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost.publishedVersio

    A Teaching-Learning-Based Optimization Algorithm for the Weighted Set-Covering Problem

    Get PDF
    The need to make good use of resources has allowed metaheuristics to become a tool to achieve this goal. There are a number of complex problems to solve, among which is the Set-Covering Problem, which is a representation of a type of combinatorial optimization problem, which has been applied to several real industrial problems. We use a binary version of the optimization algorithm based on teaching and learning to solve the problem, incorporating various binarization schemes, in order to solve the binary problem. In this paper, several binarization techniques are implemented in the teaching/learning based optimization algorithm, which presents only the minimum parameters to be configured such as the population and number of iterations to be evaluated. The performance of metaheuristic was evaluated through 65 benchmark instances. The results obtained are promising compared to those found in the literature

    Exploring the Impact of Evolutionary Computing based Feature Selection in Suicidal Ideation Detection

    Full text link
    © 2019 IEEE. The ubiquitous availability of smartphones and the increasing popularity of social media provide a platform for users to express their feelings, including suicidal ideation. Suicide prevention by suicidal ideation detection on social media lights the path to controlling the rapidly increasing suicide rates amongst youth. This paper proposes a diverse set of features and investigates into feature selection using the Firefly algorithm to build an efficient and robust supervised approach to classifying tweets with suicidal ideation. The development of a suicidal language to create three diverse, manually annotated datasets leads to the validation of the proposed model. An in-depth result and error analysis lead to an accurate system for monitoring suicidal ideation on social media along with the discovery of optimal feature subsets and selection methods using a penalty based Firefly algorithm

    A Review and Comparative Study of Firefly Algorithm and its Modified Versions

    Get PDF
    Firefly algorithm is one of the well-known swarm-based algorithms which gained popularity within a short time and has different applications. It is easy to understand and implement. The existing studies show that it is prone to premature convergence and suggest the relaxation of having constant parameters. To boost the performance of the algorithm, different modifications are done by several researchers. In this chapter, we will review these modifications done on the standard firefly algorithm based on parameter modification, modified search strategy and change the solution space to make the search easy using different probability distributions. The modifications are done for continuous as well as non-continuous problems. Different studies including hybridization of firefly algorithm with other algorithms, extended firefly algorithm for multiobjective as well as multilevel optimization problems, for dynamic problems, constraint handling and convergence study will also be briefly reviewed. A simulation-based comparison will also be provided to analyse the performance of the standard as well as the modified versions of the algorithm

    Q-Learnheuristics: towards data-driven balanced metaheuristics

    Get PDF
    One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions

    Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm

    Get PDF
    Bidirectional inductive power transfer (BIPT) system facilitates contactless power transfer between two sides and across an air-gap, through weak magnetic coupling. Typically, this system is nonlinear high order system which includes nonlinear switch components and resonant networks, developing of accurate model is a challenging task. In this paper, a novel technique for parameter identification of a BIPT system is presented by using chaotic-enhanced fruit fly optimization algorithm (CFOA). The fruit fly optimization algorithm (FOA) is a new meta-heuristic technique based on the swarm behavior of the fruit fly. This paper proposes a novel CFOA, which employs chaotic sequence to enhance the global optimization capacity of original FOA. The parameter identification of the BIPT system is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso, CT, Cs, M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data. Simulations show that the proposed parameter identification technique is robust to measurements noise and variation of operation condition and thus it is suitable for practical application

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    • 

    corecore