38 research outputs found

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach

    Co-evolutionary Hybrid Bi-level Optimization

    Get PDF
    Multi-level optimization stems from the need to tackle complex problems involving multiple decision makers. Two-level optimization, referred as ``Bi-level optimization'', occurs when two decision makers only control part of the decision variables but impact each other (e.g., objective value, feasibility). Bi-level problems are sequential by nature and can be represented as nested optimization problems in which one problem (the ``upper-level'') is constrained by another one (the ``lower-level''). The nested structure is a real obstacle that can be highly time consuming when the lower-level is NPhard\mathcal{NP}-hard. Consequently, classical nested optimization should be avoided. Some surrogate-based approaches have been proposed to approximate the lower-level objective value function (or variables) to reduce the number of times the lower-level is globally optimized. Unfortunately, such a methodology is not applicable for large-scale and combinatorial bi-level problems. After a deep study of theoretical properties and a survey of the existing applications being bi-level by nature, problems which can benefit from a bi-level reformulation are investigated. A first contribution of this work has been to propose a novel bi-level clustering approach. Extending the well-know ``uncapacitated k-median problem'', it has been shown that clustering can be easily modeled as a two-level optimization problem using decomposition techniques. The resulting two-level problem is then turned into a bi-level problem offering the possibility to combine distance metrics in a hierarchical manner. The novel bi-level clustering problem has a very interesting property that enable us to tackle it with classical nested approaches. Indeed, its lower-level problem can be solved in polynomial time. In cooperation with the Luxembourg Centre for Systems Biomedicine (LCSB), this new clustering model has been applied on real datasets such as disease maps (e.g. Parkinson, Alzheimer). Using a novel hybrid and parallel genetic algorithm as optimization approach, the results obtained after a campaign of experiments have the ability to produce new knowledge compared to classical clustering techniques combining distance metrics in a classical manner. The previous bi-level clustering model has the advantage that the lower-level can be solved in polynomial time although the global problem is by definition NP\mathcal{NP}-hard. Therefore, next investigations have been undertaken to tackle more general bi-level problems in which the lower-level problem does not present any specific advantageous properties. Since the lower-level problem can be very expensive to solve, the focus has been turned to surrogate-based approaches and hyper-parameter optimization techniques with the aim of approximating the lower-level problem and reduce the number of global lower-level optimizations. Adapting the well-know bayesian optimization algorithm to solve general bi-level problems, the expensive lower-level optimizations have been dramatically reduced while obtaining very accurate solutions. The resulting solutions and the number of spared lower-level optimizations have been compared to the bi-level evolutionary algorithm based on quadratic approximations (BLEAQ) results after a campaign of experiments on official bi-level benchmarks. Although both approaches are very accurate, the bi-level bayesian version required less lower-level objective function calls. Surrogate-based approaches are restricted to small-scale and continuous bi-level problems although many real applications are combinatorial by nature. As for continuous problems, a study has been performed to apply some machine learning strategies. Instead of approximating the lower-level solution value, new approximation algorithms for the discrete/combinatorial case have been designed. Using the principle employed in GP hyper-heuristics, heuristics are trained in order to tackle efficiently the NPhard\mathcal{NP}-hard lower-level of bi-level problems. This automatic generation of heuristics permits to break the nested structure into two separated phases: \emph{training lower-level heuristics} and \emph{solving the upper-level problem with the new heuristics}. At this occasion, a second modeling contribution has been introduced through a novel large-scale and mixed-integer bi-level problem dealing with pricing in the cloud, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP). After a series of experiments that consisted in training heuristics on various lower-level instances of the BCPOP and using them to tackle the bi-level problem itself, the obtained results are compared to the ``cooperative coevolutionary algorithm for bi-level optimization'' (COBRA). Although training heuristics enables to \emph{break the nested structure}, a two phase optimization is still required. Therefore, the emphasis has been put on training heuristics while optimizing the upper-level problem using competitive co-evolution. Instead of adopting the classical decomposition scheme as done by COBRA which suffers from the strong epistatic links between lower-level and upper-level variables, co-evolving the solution and the mean to get to it can cope with these epistatic link issues. The ``CARBON'' algorithm developed in this thesis is a competitive and hybrid co-evolutionary algorithm designed for this purpose. In order to validate the potential of CARBON, numerical experiments have been designed and results have been compared to state-of-the-art algorithms. These results demonstrate that ``CARBON'' makes possible to address nested optimization efficiently

    Optimal Control of Hybrid Systems and Renewable Energies

    Get PDF
    This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control

    A deep learning theory for neural networks grounded in physics

    Full text link
    Au cours de la dernière décennie, l'apprentissage profond est devenu une composante majeure de l'intelligence artificielle, ayant mené à une série d'avancées capitales dans une variété de domaines. L'un des piliers de l'apprentissage profond est l'optimisation de fonction de coût par l'algorithme du gradient stochastique (SGD). Traditionnellement en apprentissage profond, les réseaux de neurones sont des fonctions mathématiques différentiables, et les gradients requis pour l'algorithme SGD sont calculés par rétropropagation. Cependant, les architectures informatiques sur lesquelles ces réseaux de neurones sont implémentés et entraînés souffrent d’inefficacités en vitesse et en énergie, dues à la séparation de la mémoire et des calculs dans ces architectures. Pour résoudre ces problèmes, le neuromorphique vise à implementer les réseaux de neurones dans des architectures qui fusionnent mémoire et calculs, imitant plus fidèlement le cerveau. Dans cette thèse, nous soutenons que pour construire efficacement des réseaux de neurones dans des architectures neuromorphiques, il est nécessaire de repenser les algorithmes pour les implémenter et les entraîner. Nous présentons un cadre mathématique alternative, compatible lui aussi avec l’algorithme SGD, qui permet de concevoir des réseaux de neurones dans des substrats qui exploitent mieux les lois de la physique. Notre cadre mathématique s'applique à une très large classe de modèles, à savoir les systèmes dont l'état ou la dynamique sont décrits par des équations variationnelles. La procédure pour calculer les gradients de la fonction de coût dans de tels systèmes (qui dans de nombreux cas pratiques ne nécessite que de l'information locale pour chaque paramètre) est appelée “equilibrium propagation” (EqProp). Comme beaucoup de systèmes en physique et en ingénierie peuvent être décrits par des principes variationnels, notre cadre mathématique peut potentiellement s'appliquer à une grande variété de systèmes physiques, dont les applications vont au delà du neuromorphique et touchent divers champs d'ingénierie.In the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing

    Automatic machine learning:methods, systems, challenges

    Get PDF
    corecore