124 research outputs found

    Rebalancing shared mobility systems by user incentive scheme via reinforcement learning

    Get PDF
    Shared mobility systems regularly suffer from an imbalance of vehicle supply within the system, leading to users being unable to receive service. If such imbalance problems are not mitigated some users will not be serviced. There is an increasing interest in the use of reinforcement learning (RL) techniques for improving the resource supply balance and service level of systems. The goal of these techniques is to produce an effective user incentivization policy scheme to encourage users of a shared mobility system to slightly alter their travel behavior in exchange for a small monetary incentive. These slight changes in user behavior are intended to over time increase the service level of the shared mobility system and improve user experience. In this thesis, two important questions are explored: (1) What state-action representation should be used to produce an effective user incentive scheme for a shared mobility system? (2) How effective are reinforcement learning-based solutions on the rebalancing problem under varying levels of resource supply, user demand, and budget? Our extensive empirical results based on data-driven simulation show that: 1. A state space with predicted user behavior coupled with a simple action mechanism produces an effective incentive scheme under varying environment scenarios. 2. The reinforcement learning-based incentive mechanisms perform at varying degrees of effectiveness under different environmental scenarios in terms of service level

    Intelligence in 5G networks

    Get PDF
    Over the past decade, Artificial Intelligence (AI) has become an important part of our daily lives; however, its application to communication networks has been partial and unsystematic, with uncoordinated efforts that often conflict with each other. Providing a framework to integrate the existing studies and to actually build an intelligent network is a top research priority. In fact, one of the objectives of 5G is to manage all communications under a single overarching paradigm, and the staggering complexity of this task is beyond the scope of human-designed algorithms and control systems. This thesis presents an overview of all the necessary components to integrate intelligence in this complex environment, with a user-centric perspective: network optimization should always have the end goal of improving the experience of the user. Each step is described with the aid of one or more case studies, involving various network functions and elements. Starting from perception and prediction of the surrounding environment, the first core requirements of an intelligent system, this work gradually builds its way up to showing examples of fully autonomous network agents which learn from experience without any human intervention or pre-defined behavior, discussing the possible application of each aspect of intelligence in future networks

    A Data-Driven Based Dynamic Rebalancing Methodology for Bike Sharing Systems

    Get PDF
    Mobility in cities is a fundamental asset and opens several problems in decision making and the creation of new services for citizens. In the last years, transportation sharing systems have been continuously growing. Among these, bike sharing systems became commonly adopted. There exist two different categories of bike sharing systems: station-based systems and free-floating services. In this paper, we concentrate our analyses on station-based systems. Such systems require periodic rebalancing operations to guarantee good quality of service and system usability by moving bicycles from full stations to empty stations. In particular, in this paper, we propose a dynamic bicycle rebalancing methodology based on frequent pattern mining and its implementation. The extracted patterns represent frequent unbalanced situations among nearby stations. They are used to predict upcoming critical statuses and plan the most effective rebalancing operations using an entirely data-driven approach. Experiments performed on real data of the Barcelona bike sharing system show the effectiveness of the proposed approach

    The multiple vehicle balancing problem

    Get PDF
    This paper deals with the multiple vehicle balancing problem (MVBP). Given a fleet of vehicles of limited capacity, a set of vertices with initial and target inventory levels and a distribution network, the MVBP requires to design a set of routes along with pickup and delivery operations such that inventory is redistributed among the vertices without exceeding capacities, and routing costs are minimized. The MVBP is NP\u2010hard, generalizing several problems in transportation, and arising in bike\u2010sharing systems. Using theoretical properties of the problem, we propose an integer linear programming formulation and introduce strengthening valid inequalities. Lower bounds are computed by column generation embedding an ad\u2010hoc pricing algorithm, while upper bounds are obtained by a memetic algorithm that separate routing from pickup and delivery operations. We combine these bounding routines in both exact and matheuristic algorithms, obtaining proven optimal solutions for MVBP instances with up to 25 stations

    A multiple type bike repositioning problem

    Get PDF
    This paper investigates a new static bicycle repositioning problem in which multiple types of bikes are considered. Some types of bikes that are in short supply at a station can be substituted by other types, whereas some types of bikes can occupy the spaces of other types in the vehicle during repositioning. These activities provide two new strategies, substitution and occupancy, which are examined in this paper. The problem is formulated as a mixed-integer linear programming problem to minimize the total cost, which consists of the route travel cost, penalties due to unmet demand, and penalties associated with the substitution and occupancy strategies. A combined hybrid genetic algorithm is proposed to solve this problem. This solution algorithm consists of (i) a modified version of a hybrid genetic search with adaptive diversity control to determine routing decisions and (ii) a proposed greedy heuristic to determine the loading and unloading instructions at each visited station and the substitution and occupancy strategies. The results show that the proposed method can provide high-quality solutions with short computing times. Using small examples, this paper also reveals problem properties and repositioning strategies in bike sharing systems with multiple types of bikes.published_or_final_versio
    • …
    corecore