5,858 research outputs found

    Edge IoT Driven Framework for Experimental Investigation and Computational Modeling of Integrated Food, Energy, and Water System

    Get PDF
    As the global population soars from today’s 7.3 billion to an estimated 10 billion by 2050, the demand for Food, Energy, and Water (FEW) resources is expected to more than double. Such a sharp increase in demand for FEW resources will undoubtedly be one of the biggest global challenges. The management of food, energy, water for smart, sustainable cities involves a multi-scale problem. The interactions of these three dynamic infrastructures require a robust mathematical framework for analysis. Two critical solutions for this challenge are focused on technology innovation on systems that integrate food-energy-water and computational models that can quantify the FEW nexus. Information Communication Technology (ICT) and the Internet of Things (IoT) technologies are innovations that will play critical roles in addressing the FEW nexus stress in an integrated way. The use of sensors and IoT devices will be essential in moving us to a path of more productivity and sustainability. Recent advancements in IoT, Wireless Sensor Networks (WSN), and ICT are one lever that can address some of the environmental, economic, and technical challenges and opportunities in this sector. This dissertation focuses on quantifying and modeling the nexus by proposing a Leontief input-output model unique to food-energy-water interacting systems. It investigates linkage and interdependency as demand for resource changes based on quantifiable data. The interdependence of FEW components was measured by their direct and indirect linkage magnitude for each interaction. This work contributes to the critical domain required to develop a unique integrated interdependency model of a FEW system shying away from the piece-meal approach. The physical prototype for the integrated FEW system is a smart urban farm that is optimized and built for the experimental portion of this dissertation. The prototype is equipped with an automated smart irrigation system that uses real-time data from wireless sensor networks to schedule irrigation. These wireless sensor nodes are allocated for monitoring soil moisture, temperature, solar radiation, humidity utilizing sensors embedded in the root area of the crops and around the testbed. The system consistently collected data from the three critical sources; energy, water, and food. From this physical model, the data collected was structured into three categories. Food data consists of: physical plant growth, yield productivity, and leaf measurement. Soil and environment parameters include; soil moisture and temperature, ambient temperature, solar radiation. Weather data consists of rainfall, wind direction, and speed. Energy data include voltage, current, watts from both generation and consumption end. Water data include flow rate. The system provides off-grid clean PV energy for all energy demands of farming purposes, such as irrigation and devices in the wireless sensor networks. Future reliability of the off-grid power system is addressed by investigating the state of charge, state of health, and aging mechanism of the backup battery units. The reliability assessment of the lead-acid battery is evaluated using Weibull parametric distribution analysis model to estimate the service life of the battery under different operating parameters and temperatures. Machine learning algorithms are implemented on sensor data acquired from the experimental and physical models to predict crop yield. Further correlation analysis and variable interaction effects on crop yield are investigated

    Real-Time Streaming Analytics using Big Data Paradigm and Predictive Modelling based on Deep Learning

    Get PDF
    With the evolution of distributed streaming platforms analysing humongous time series data, which is streamed continuously from IoT devices become lot easier. In most of the IoT networks the data are in motion or in data centre/cloud. It is possible to process this data in real time similar to edge devices using the big data framework.  In data intensive applications predictive analytics require more resources to perform complex computations. Apache Flink framework is capable of performing real time streaming of schema less data and scales very high in distributed environment with low latency, it is used to collect and store the data in the cloud. This work suggests a suitable environment to collect, transport, preprocess and aggregate the data stream to perform predictive analytics using deep learning models. Deep learning automatically extracts features and builds models after training, it has the potential to solve problems that can't be solved by conventional machine learning models. Therefore, the use of algorithms based on deep learning is recommended for forecasting temporal data. Also, we discuss a number of different deep learning forecasting models and analyse the performance of different deep learning forecasting models in order to determine which one is the effective model for single step, multi step and multi variant methods based on error functions with respect to streamed sensor data

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Utilization of big data to improve management of the emergency departments. Results of a systematic review

    Get PDF
    Background. The emphasis on using big data is growing exponentially in several sectors including biomedicine, life sciences and scientific research, mainly due to advances in information technologies and data analysis techniques. Actually, medical sciences can rely on a large amount of biomedical information and Big Data can aggregate information around multiple scales, from the DNA to the ecosystems. Given these premises, we wondered if big data could be useful to analyze complex systems such as the Emergency Departments (EDs) to improve their management and eventually patient outcomes. Methods. We performed a systematic review of the literature to identify the studies that implemented the application of big data in EDs and to describe what have already been done and what are the expectations, issues and challenges in this field. Results. Globally, eight studies met our inclusion criteria concerning three main activities: the management of ED visits, the ED process and activities and, finally, the prediction of the outcome of ED patients. Although the results of the studies show good perspectives regarding the use of big data in the management of emergency departments, there are still some issues that make their use still difficult. Most of the predictive models and algorithms have been applied only in retrospective studies, not considering the challenge and the costs of a real-time use of big data. Only few studies highlight the possible usefulness of the large volume of clinical data stored into electronic health records to generate evidence in real time. Conclusion. The proper use of big data in this field still requires a better management information flow to allow real-time application

    Smart Connected City for Holistic Services

    Get PDF
    The construction of a smart city is based on broadband networks and high-tech under consideration of city infrastructure with holistic city service systems. Digital city was started to connect computing devices using network-based technologies in 1990s. In the beginning of 2000s, many cities were interested in the construction of city infrastructure based on the broadband networks. With the developing high-tech like wireless network, the ubiquitous city was introduced as a new type of an urban city infrastructure to satisfy citizens’ needs. These days it would become more important for citizens to provide holistic city services using the transferred data as generated resulting traffics from massive number of end-devices through broadband networks. Smart city has been constructed with multifaceted sectors like high-tech device-based physical and service-based social sector. The integrated sectors are creating new tremendous values based on embedding intelligence in the hyperconnected city. Finally, the smart city should be evolved by centering on people and the creative market is growing up rapidly

    Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

    Get PDF
    The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    corecore