1,351 research outputs found

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation

    Full text link
    We introduce the multiresolution recurrent neural network, which extends the sequence-to-sequence framework to model natural language generation as two parallel discrete stochastic processes: a sequence of high-level coarse tokens, and a sequence of natural language tokens. There are many ways to estimate or learn the high-level coarse tokens, but we argue that a simple extraction procedure is sufficient to capture a wealth of high-level discourse semantics. Such procedure allows training the multiresolution recurrent neural network by maximizing the exact joint log-likelihood over both sequences. In contrast to the standard log- likelihood objective w.r.t. natural language tokens (word perplexity), optimizing the joint log-likelihood biases the model towards modeling high-level abstractions. We apply the proposed model to the task of dialogue response generation in two challenging domains: the Ubuntu technical support domain, and Twitter conversations. On Ubuntu, the model outperforms competing approaches by a substantial margin, achieving state-of-the-art results according to both automatic evaluation metrics and a human evaluation study. On Twitter, the model appears to generate more relevant and on-topic responses according to automatic evaluation metrics. Finally, our experiments demonstrate that the proposed model is more adept at overcoming the sparsity of natural language and is better able to capture long-term structure.Comment: 21 pages, 2 figures, 10 table

    EmoUS: Simulating User Emotions in Task-Oriented Dialogues

    Full text link
    Existing user simulators (USs) for task-oriented dialogue systems only model user behaviour on semantic and natural language levels without considering the user persona and emotions. Optimising dialogue systems with generic user policies, which cannot model diverse user behaviour driven by different emotional states, may result in a high drop-off rate when deployed in the real world. Thus, we present EmoUS, a user simulator that learns to simulate user emotions alongside user behaviour. EmoUS generates user emotions, semantic actions, and natural language responses based on the user goal, the dialogue history, and the user persona. By analysing what kind of system behaviour elicits what kind of user emotions, we show that EmoUS can be used as a probe to evaluate a variety of dialogue systems and in particular their effect on the user's emotional state. Developing such methods is important in the age of large language model chat-bots and rising ethical concerns.Comment: accepted by SIGIR202
    • …
    corecore