3,208 research outputs found

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Structural Damage Detection Based on Improved Multi-Particle Swarm Co-Evolution Optimization Algorithm

    Get PDF
    This chapter presents an improved multi-particle swarm co-evolution optimization algorithm (IMPSCO) to detect structural damage. Firstly, IMPSCO is integrated with Newmark’s algorithm for damage detection and system identification, which just need few sensors. In addition, for reducing the searching parameters, a two-stage damage detection method based on modal strain energy and IMPSCO is presented. In order to validate the proposed method, a seven-story steel frame experiment in laboratory conditions is performed and a comparison is made between the proposed approach and genetic algorithm (GA). The results show that: (1) the proposed methods can not only effectively locate damage location but also accurately quantify the damage severity. Besides, it has excellent noise-tolerance and adaptability; (2) for integrating IMPSCO and Newmark’s algorithm, it implements only by using any kinds of structural time-series responses and the excitation force; (3) compared with genetic algorithm, IMPSCO is more efficient and robust for damage detection with a better noise-tolerance

    Kooperativna evolucija za kvalitetno pružanje usluga u paradigmi Interneta stvari

    Get PDF
    To facilitate the automation process in the Internet of Things, the research issue of distinguishing prospective services out of many “similar” services, and identifying needed services w.r.t the criteria of Quality of Service (QoS), becomes very important. To address this aim, we propose heuristic optimization, as a robust and efficient approach for solving complex real world problems. Accordingly, this paper devises a cooperative evolution approach for service composition under the restrictions of QoS. A series of effective strategies are presented for this problem, which include an enhanced local best first strategy and a global best strategy that introduces perturbations. Simulation traces collected from real measurements are used for evaluating the proposed algorithms under different service composition scales that indicate that the proposed cooperative evolution approach conducts highly efficient search with stability and rapid convergence. The proposed algorithm also makes a well-designed trade-off between the population diversity and the selection pressure when the service compositions occur on a large scale.Kako bi se automatizirali procesi u internetu stvati, nužno je rezlikovati bitne usluge u moru sličnih kao i identificirati potrebne usluge u pogledu kvalitete usluge (QoS). Kako bi doskočili ovome problemu prdlaže se heuristička optimizacija kao robustan i efikasan način rješavajne kompleksnih problema. Nadalje, u članku je predložen postupak kooperativne evolucije za slaganje usluga uz ograničenja u pogledu kvalutete usluge. Predstavljen je niz efektivnih strategija za spomenuti problem uključujući strategije najboljeg prvog i najboljeg globalnog koje unose perturbacije u polazni problem. Simulacijski rezultati kao i stvarni podatci su korišteni u svrhu evaluacije prodloženog algoritma kako bi se osigurala efikasna pretraga uz stabilnost i brzu konvergenciju. Predloženi algoritam tako.er vodi računa o odnosu izme.u različitosti populacije i selekcijskog pritiska kada je potrebno osigurati slaganje usluga na velikoj skali

    Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems

    Get PDF
    Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-objective optimization based on particle swarm optimization (PSO). MGPSO has been shown to be competitive when compared with other state-of-the-art multi-objective optimization algorithms for low-dimensional problems. However, to the best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-objective optimization problems has not been studied. One goal of this thesis is to provide a scalability study of MGPSO in order to evaluate its efficacy for high-dimensional multi-objective optimization problems. It is observed that while MGPSO has comparable performance to state-of-the-art multi-objective optimization algorithms, it experiences a performance drop with the increase in the problem dimensionality. Therefore, a main contribution of this work is a new scalable MGPSO-based algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empirical study on well-known benchmark problems comparing the proposed improved approach with various state-of-the-art multi-objective optimization algorithms is done. Results show that the proposed CCMGPSO is highly competitive for high-dimensional problems

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure
    corecore