3,267 research outputs found

    Distributed interaction between computer virus and patch: A modeling study

    Full text link
    The decentralized patch distribution mechanism holds significant promise as an alternative to its centralized counterpart. For the purpose of accurately evaluating the performance of the decentralized patch distribution mechanism and based on the exact SIPS model that accurately captures the average dynamics of the interaction between viruses and patches, a new virus-patch interacting model, which is known as the generic SIPS model, is proposed. This model subsumes the linear SIPS model. The dynamics of the generic SIPS model is studied comprehensively. In particular, a set of criteria for the final extinction or/and long-term survival of viruses or/and patches are presented. Some conditions for the linear SIPS model to accurately capture the average dynamics of the virus-patch interaction are empirically found. As a consequence, the linear SIPS model can be adopted as a standard model for assessing the performance of the distributed patch distribution mechanism, provided the proper conditions are satisfied

    General SIS diffusion process with indirect spreading pathways on a hypergraph

    Full text link
    While conventional graphs only characterize pairwise interactions, higher-order networks (hypergraph, simplicial complex) capture multi-body interactions, which is a potentially more suitable modeling framework for a complex real system. However, the introduction of higher-order interactions brings new challenges for the rigorous analysis of such systems on a higher-order network. In this paper, we study a series of SIS-type diffusion processes with both indirect and direct pathways on a directed hypergraph. In a concrete case, the model we propose is based on a specific choice (polynomial) of interaction function (how several agents influence each other when they are in a hyperedge). Then, by the same choice of interaction function, we further extend the system and propose a bi-virus competing model on a directed hypergraph by coupling two single-virus models together. Finally, the most general model in this paper considers an abstract interaction function under single-virus and bi-virus settings. For the single-virus model, we provide the results regarding healthy state and endemic equilibrium. For the bi-virus setting, we further give an analysis of the existence and stability of the healthy state, dominant endemic equilibria, and coexisting equilibria. All theoretical results are finally supported by some numerical examples

    Towards Understanding the Endemic Behavior of a Competitive Tri-Virus SIS Networked Model

    Full text link
    This paper studies the endemic behavior of a multi-competitive networked susceptible-infected-susceptible (SIS) model. Specifically, the paper deals with three competing virus systems (i.e., tri-virus systems). First, we show that a tri-virus system, unlike a bi-virus system, is not a monotone dynamical system. Using the Parametric Transversality Theorem, we show that, generically, a tri-virus system has a finite number of equilibria and that the Jacobian matrices associated with each equilibrium are nonsingular. The endemic equilibria of this system can be classified as follows: a) single-virus endemic equilibria (also referred to as the boundary equilibria), where precisely one of the three viruses is alive; b) 2-coexistence equilibria, where exactly two of the three viruses are alive; and c) 3-coexistence equilibria, where all three viruses survive in the network. We provide a necessary and sufficient condition that guarantees local exponential convergence to a boundary equilibrium. Further, we secure conditions for the nonexistence of 3-coexistence equilibria (resp. for various forms of 2-coexistence equilibria). We also identify sufficient conditions for the existence of a 2-coexistence (resp. 3-coexistence) equilibrium. We identify conditions on the model parameters that give rise to a continuum of coexistence equilibria. More specifically, we establish i) a scenario that admits the existence and local exponential attractivity of a line of coexistence equilibria; and ii) scenarios that admit the existence of, and, in the case of one such scenario, global convergence to, a plane of 3-coexistence equilibria.Comment: arXiv admin note: substantial text overlap with arXiv:2209.1182

    Competitive Networked Bivirus SIS spread over Hypergraphs

    Full text link
    The paper deals with the spread of two competing viruses over a network of population nodes, accounting for pairwise interactions and higher-order interactions (HOI) within and between the population nodes. We study the competitive networked bivirus susceptible-infected-susceptible (SIS) model on a hypergraph introduced in Cui et al. [1]. We show that the system has, in a generic sense, a finite number of equilibria, and the Jacobian associated with each equilibrium point is nonsingular; the key tool is the Parametric Transversality Theorem of differential topology. Since the system is also monotone, it turns out that the typical behavior of the system is convergence to some equilibrium point. Thereafter, we exhibit a tri-stable domain with three locally exponentially stable equilibria. For different parameter regimes, we establish conditions for the existence of a coexistence equilibrium (both viruses infect separate fractions of each population node)

    On a bi-virus epidemic model with partial and waning immunity

    Get PDF
    We propose a deterministic compartmental model to study the impact of partial and waning immunity on the spread of two competitive epidemic diseases, hereafter termed viruses. Building on a standard bi-virus SIS model, we introduce additional compartments to account for individuals who recovered from each virus, and tunable parameters to capture the level of virus-specific and cross protection acquired after recovery from a specific virus, and the rate at which such immunity could wane. We formalise the model as a system of nonlinear ordinary differential equations, which is amenable to analytical treatment, and we focus our analysis on two specialisations of the model. First, in the absence of waning immunity, we establish a global convergence result showing that, above the epidemic threshold, only the “fittest” virus becomes endemic. Second, in the absence of cross-immunity, we demonstrate instead that long-lasting co-existence of the two viruses may emerge, depending on the model parameters

    Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses.

    Get PDF
    Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of  global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans
    corecore