66 research outputs found

    Computational Tools and Experimental Methods for the Development of Passive Prosthetic Feet

    Get PDF
    Modern prosthetic foot designs are incredibly diverse in comparison to what was o↵ered to amputees at the turn of the millennium. Powered ankles can supply natural levels of joint torque, whilst passive feet continue to optimise for kinematic goals. However, most passive feet still do not solve the issue of unhealthy loads, and an argument can be made that optimisation methods have neglected the less active and elderly amputee. This thesis creates a framework for a novel approach to prosthetic foot optimisation by focusing on the transitionary motor tasks of gait initiation and termination.An advanced FEA model has been created in ANSYS® using boundary con-ditions derived from an ISO testing standard that replicates stance phase loading. This model can output standard results found in the literature and goes beyond by parameterising the roll-over shape within the software using custom APDL code. Extensive contact exploration and an experimental study have ensured the robustness of the model. Subject force and kinematic data can be used for specific boundary conditions, which would allow for easy adaptation to the transitionary motor tasks.This FEA model has been used in the development of prosthetic experiment tool, which can exchange helical springs to assess e↵ects of small changes in sti↵-ness on gait metrics. A rigorous design methodology was employed for all compo-nents, including parametric design studies, response surface optimisation, and ISO level calculations. The design has been manufactured into a working prototype and is ready for clinical trials to determine its efficacy.The conclusion of this framework is in the development of an experimental method to collect subject data for use in the models. A pilot study uncovered reliable protocols, which were then verified with ANOVA statistics. Proportional ratios were defined as additions to metric peak analyses already found in the liter-ature. These tools are ready for deployment in full clinical trials with amputees, so that a new prosthetic optimisation pathway can be discovered for the benefit of less active or elderly amputees

    A virus-evolutionary, multi-objective intelligent tool path optimisation methodology for sculptured surface CNC machining

    Get PDF
    Today’s production environment faces multiple challenges involving fast adaptation to modern technologies, flexibility in accommodating them to current industrial practices and cost reduction through automating repetitive tasks. At the same time the requirements for manufacturing functional, aesthetic and versatile products, turn these challenges to clear and present industrial problems that need to be solved by delivering at least semi-optimal results. Even though sculptured surfaces can meet such requirements when it comes to product design, a critical problem exists in terms of their machining operations owing to their arbitrary nature and complex geometrical features as opposed to prismatic surfaces. Current approaches for generating tool paths in computer-aided manufacturing (CAM) systems are still based on human intervention as well as trial-and-error experiments. These approaches neither can provide optimal tool paths nor can they establish a generic approach for an advantageous and profitable sculptured surface machining (SSM). Major goal of this PhD thesis is the development of an intelligent, automated and generic methodology for generating optimal 5-axis CNC tool paths to machine complex sculptured surfaces. The methodology considers the tool path parameters “cutting tool”, “stepover”, “lead angle”, “tilt angle” and “maximum discretisation step” as the independent variables for optimisation whilst the mean machining error, its mean distribution on the sculptured surface and the minimum number of tool positions are the crucial optimisation criteria formulating the generalized multi-objective sculptured surface CNC machining optimisation problem. The methodology is a two-fold programming framework comprising a virus-evolutionary genetic algorithm as the methodology’s intelligent part for performing the multi-objective optimisation and an automation function for driving the algorithm through its argument-passing elements directly related to CAM software, i.e., tool path computation utilities, objects for programmatically retrieving tool path parameters’ inputs, etc. These two modules (the intelligent algorithm and the automation function) interact and exchange information as needed towards the achievement of creating globally optimal tool paths for any sculptured surface. The methodology has been validated through simulation experiments and actual machining operations conducted to benchmark sculptured surfaces and corresponding results have been compared to those available from already existing tool path generation/optimisation approaches in the literature. The results have proven the methodology’s practical merits as well as its effectiveness for maintaining quality and productivity in sculptured surface 5-axis CNC machining

    Determining normal and abnormal lip shapes during movement for use as a surgical outcome measure

    Get PDF
    Craniofacial assessment for diagnosis, treatment planning and outcome has traditionally relied on imaging techniques that provide a static image of the facial structure. Objective measures of facial movement are however becoming increasingly important for clinical interventions where surgical repositioning of facial structures can influence soft tissue mobility. These applications include the management of patients with cleft lip, facial nerve palsy and orthognathic surgery. Although technological advances in medical imaging have now enabled three-dimensional (3D) motion scanners to become commercially available their clinical application to date has been limited. Therefore, the aim of this study is to determine normal and abnormal lip shapes during movement for use as a clinical outcome measure using such a scanner. Lip movements were captured from an average population using a 3D motion scanner. Consideration was given to the type of facial movement captured (i.e. verbal or non-verbal) and also the method of feature extraction (i.e. manual or semi-automatic landmarking). Statistical models of appearance (Active Shape Models) were used to convert the video motion sequences into linear data and identify reproducible facial movements via pattern recognition. Average templates of lip movement were created based on the most reproducible lip movements using Geometric Morphometrics (GMM) incorporating Generalised Procrustes Analysis (GPA) and Principal Component Analysis (PCA). Finally lip movement data from a patient group undergoing orthognathic surgery was incorporated into the model and Discriminant Analysis (DA) employed in an attempt to statistically distinguish abnormal lip movement. The results showed that manual landmarking was the preferred method of feature extraction. Verbal facial gestures (i.e. words) were significantly more reproducible/repeatable over time when compared to non-verbal gestures (i.e. facial expressions). It was possible to create average templates of lip movement from the control group, which acted as an outcome measure, and from which abnormalities in movement could be discriminated pre-surgery. These abnormalities were found to normalise post-surgery. The concepts of this study form the basis of analysing facial movement in the clinical context. The methods are transferrable to other patient groups. Specifically, patients undergoing orthognathic surgery have differences in lip shape/movement when compared to an average population. Correcting the position of the basal bones in this group of patients appears to normalise lip mobility

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Proceedings of the International Workshop on Medical Ultrasound Tomography: 1.- 3. Nov. 2017, Speyer, Germany

    Get PDF
    Ultrasound Tomography is an emerging technology for medical imaging that is quickly approaching its clinical utility. Research groups around the globe are engaged in research spanning from theory to practical applications. The International Workshop on Medical Ultrasound Tomography (1.-3. November 2017, Speyer, Germany) brought together scientists to exchange their knowledge and discuss new ideas and results in order to boost the research in Ultrasound Tomography

    Reconstruction 3D personnalisée de la cage thoracique pour l'amélioration de la simulation de l'effet de la correction du rachis sur l'apparence externe du tronc

    Get PDF
    Résumé Afin de procéder à une évaluation clinique de la scoliose, les cliniciens se réfèrent souvent à l'angle de Cobb. Celui-ci ne représente malheureusement que la courbure mesurée sur un plan. De plus, les déformations que subit la cage thoracique ne sont pas toujours corrélées à celle de la colonne vertébrale. Plusieurs techniques ont été proposées afin de fournir au clinicien une information quant à la configuration tridimensionnelle de la cage thoracique. Cependant, il doit souvent se limiter à la correction de la colonne vertébrale, ce qui peut entraîner une persistance des gibbosités après l'opération. Un simulateur permettant de prédire l'effet d'une correction du rachis sur l'apparence externe du tronc serait très utile dans la planification de la chirurgie. Le chirurgien pourra ainsi déterminer la stratégie opératoire qui pourra non seulement redresser la colonne mais réduire les gibbosités qui affectent aussi l'apparence externe du patient. Par contre, les modèles tridimensionnels de la cage thoracique existants ne sont pas complètement personnalisés au patient, et donc limitent la précision des résultats de simulation. L'objectif de ce projet est de développer une nouvelle technique de reconstruction 3D personnalisée de la cage thoracique, afin d'améliorer les résultats de simulation de la propagation de l'effet d'une chirurgie du rachis sur l'apparence externe du tronc. Les méthodes actuelles de reconstructions 3D de la cage thoracique ne sont pas précises et n'ont pas été validées avec des modèles représentants fidèlement une cage thoracique en position debout. Dans la littérature, la plupart des modèles de références sont obtenus par tomodensitométrie, qui s'effectue en position couchée. Ces modèles sont donc difficilement recommandables pour une validation clinique des méthodes de reconstruction 3D de la cage thoracique à partir de radiographies acquises en position debout. De plus, ces techniques n'offrent que des reconstructions de cage thoracique par modèles filaires, ou des reconstructions surfaciques par déformation de modèles génériques. Ces modèles ne sont pas adéquats dans un contexte de simulation personnalisée, où le but ultime est de planifier la meilleure stratégie à effectuer afin d'obtenir la meilleure correction à l'interne bien sûr, mais surtout à l'externe puisque c'est un facteur important de satisfaction chez le patient. Une nouvelle méthode a été proposée afin de pallier ces problèmes. Celle-ci se base uniquement sur les radiographies standards, soit la radiographie postéro-antérieure à 0° et la radiographie latérale. Premièrement, une détection semi-automatique des côtes est effectuée sur la radiographie postéro-antérieure, et une identification interactive d'un ensemble de points sur les côtes visibles est faite sur la radiographie latérale. Ensuite, une reconstruction automatique des côtes est réalisée par une mise en correspondance de ces points sur deux vues. De plus, les côtes non détectées sur la radiographie latérale, qui sont en général les côtes de la partie supérieure de la cage thoracique, sont prédites à partir des côtes inférieures, ce qui constitue l'originalité de cette méthode. Finalement, une surface est générée le long de la ligne médiane reconstruite. Cette surface représente l'épaisseur réelle de la côte, et sert de point d'ancrage pour les tissus mous lors des simulations de la correction du rachis. Une validation rigoureuse fut menée, grâce à un modèle de cage thoracique synthétique représentant une vraie cage thoracique en position debout. Cela n'a jamais été fait auparavant. Trois sévérités de déformations ont été considérées, soit 0°, 20° et 40° d'angle de Cobb thoracique droite. Dans chacun des cas, le modèle a été numérisé à l'aide d'un appareil de mesure tridimensionnelle et des radiographies ont été acquises. Des reconstructions effectuées par la nouvelle méthode et l'ancienne méthode de reconstruction de la cage thoracique utilisée à l'hôpital Sainte-Justine ont été comparées aux numérisations du modèle synthétique. La méthode proposée offre une erreur moyenne de 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) et 8,27 mm (±5,16 mm), comparativement à l'ancienne méthode qui offre une erreur moyenne de 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) et 14,05 mm (±9,59 mm), respectivement pour les configurations à 0°, 20° et 40°. De plus, des simulations ont été effectuées sur trois patients afin de déterminer si la cage thoracique obtenue par la nouvelle méthode améliore les résultats. Les résultats obtenus ont clairement démontré qu'une reconstruction précise de la cage thoracique améliore significativement les résultats de simulation. La principale contribution de ce projet réside dans le fait que la méthode proposée permet de faire une évaluation clinique fiable des déformations de la cage thoracique. L'amélioration de la précision de la reconstruction 3D et la personnalisation plus complète de la cage thoracique permettent non seulement cela, mais ouvrent aussi la voie à différentes opportunités. Notamment, la simulation de la chirurgie des côtes, la reconstruction des poumons ou même l'étude de la corrélation entre la structure osseuse interne et la surface externe du tronc bénéficierait grandement d'une cage thoracique personnalisée. Tous ces projets, globalement, contribuent à diminuer la quantité de radiation infligée aux patients, car ceux-ci auront de moins en moins à subir de radiographies afin de faire un suivi clinique.----------Abstract To evaluate scoliosis severity in the clinical setting, clinicians often refer to the Cobb angle. Unfortunately, this angle only represents a curve on a plane. Furthermore, the deformities sustained by the rib cage are not always correlated to those of the spine. Many techniques have been proposed to help the clinician by providing information about the three dimensional configuration of the rib cage. However, he must sometimes only correct the spine and rib humps may persist. A simulator predicting the effects of a spine correction on the external appearance of the trunk would be useful to plan the surgery. However, three dimensional rib cage models used are not fully personalised to each patient, thus limiting the precision of the results of the simulation. The goal of this project is to develop a new method for personalised 3D reconstruction of the rib cage, in order to improve the results of simulating the propagation of the spinal correction to the external trunk. Current methods of 3D reconstruction of the rib cage are not precise and have not been validated with models that faithfully represent a rib cage in standing position. In the literature, most reference models are obtained by computed tomography (CT) scans, which are acquired in supine position. Such models are thus inappropriate for a clinical assessment of the 3D reconstruction methods based on radiographs acquired in standing position. Furthermore, the existing methods only provide the reconstruction of the rib midlines or complete 3D rib cage models obtained by deforming generic models. These reconstructions are not adequate in the context of personalized simulation, where the ultimate goal is to plan the clinical strategy providing the best correction both of the internal structures and of the external appearance of the trunk, the latter being the main factor contributing to patient satisfaction. We have proposed a new method in order to address these problems. This method is based only on the two standards radiographs, i.e. the postero-anterior view at 0° and the lateral view. First of all, a semi-automatic detection of the ribs is done on the postero-anterior radiograph, followed by an interactive identification of a set of points on the visible ribs in the lateral view. Then, an automatic reconstruction of the ribs is performed by means of stereo matching points. The originality of this method is that it can predict the undetected ribs in the lateral view, which are mostly those of the upper section of the rib cage, based on the reconstruction of the lower ribs. Finally, a surface is generated along the rib's 3D midline. This surface represents the real thickness of the rib and serves as an anchor for the attachment of soft tissues during the simulation of the spine correction's effect on the whole trunk. A thorough validation was conducted with the help of a synthetic rib cage model. This model represents a real rib cage in standing position . This kind of validation has never been done before. Three cases of scoliotic deformation were considered, namely 0°, 20° and 40° of right-thoracic Cobb angle. In each case, the model was digitized with a coordinate measuring machine and radiographed. 3D reconstructions of the rib cage obtained by the proposed method and the existing method used at Sainte-Justine Hospital were compared to the digitized model. The new method yields mean errors of 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) and 8,27 mm (±5,16 mm), compared to the old method which yields mean errors of 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) and 14,05 mm (±9,59 mm), for the 0°, 20° and 40° deformations, respectively. Furthermore, simulations were performed on three patients to determine if the rib cage produced by the new method improves the results of the simulator. The results clearly demonstrated that a precise reconstruction of the rib cage significantly improves the simulation results. The main contribution of this project lies in the fact that the new method allows a reliable clinical assessment of rib cage deformities. In addition, the enhanced precision of the 3D reconstruction and the more complete personalization of the rib cage model open up new possibilities. In particular, the simulation of other surgical interventions such as rib resection and lung reconstruction, as well as studies on the relationship between internal bone structures and external trunk shape, could all benefit from a personalized rib cage. Globally, all these projects contribute to reducing the amount of radiation inflicted to patients because less radiographs will be required in order to make a clinical follow up

    Reconstruction 3D personnalisée de la cage thoracique pour l'amélioration de la simulation de l'effet de la correction du rachis sur l'apparence externe du tronc

    Get PDF
    Résumé Afin de procéder à une évaluation clinique de la scoliose, les cliniciens se réfèrent souvent à l'angle de Cobb. Celui-ci ne représente malheureusement que la courbure mesurée sur un plan. De plus, les déformations que subit la cage thoracique ne sont pas toujours corrélées à celle de la colonne vertébrale. Plusieurs techniques ont été proposées afin de fournir au clinicien une information quant à la configuration tridimensionnelle de la cage thoracique. Cependant, il doit souvent se limiter à la correction de la colonne vertébrale, ce qui peut entraîner une persistance des gibbosités après l'opération. Un simulateur permettant de prédire l'effet d'une correction du rachis sur l'apparence externe du tronc serait très utile dans la planification de la chirurgie. Le chirurgien pourra ainsi déterminer la stratégie opératoire qui pourra non seulement redresser la colonne mais réduire les gibbosités qui affectent aussi l'apparence externe du patient. Par contre, les modèles tridimensionnels de la cage thoracique existants ne sont pas complètement personnalisés au patient, et donc limitent la précision des résultats de simulation. L'objectif de ce projet est de développer une nouvelle technique de reconstruction 3D personnalisée de la cage thoracique, afin d'améliorer les résultats de simulation de la propagation de l'effet d'une chirurgie du rachis sur l'apparence externe du tronc. Les méthodes actuelles de reconstructions 3D de la cage thoracique ne sont pas précises et n'ont pas été validées avec des modèles représentants fidèlement une cage thoracique en position debout. Dans la littérature, la plupart des modèles de références sont obtenus par tomodensitométrie, qui s'effectue en position couchée. Ces modèles sont donc difficilement recommandables pour une validation clinique des méthodes de reconstruction 3D de la cage thoracique à partir de radiographies acquises en position debout. De plus, ces techniques n'offrent que des reconstructions de cage thoracique par modèles filaires, ou des reconstructions surfaciques par déformation de modèles génériques. Ces modèles ne sont pas adéquats dans un contexte de simulation personnalisée, où le but ultime est de planifier la meilleure stratégie à effectuer afin d'obtenir la meilleure correction à l'interne bien sûr, mais surtout à l'externe puisque c'est un facteur important de satisfaction chez le patient. Une nouvelle méthode a été proposée afin de pallier ces problèmes. Celle-ci se base uniquement sur les radiographies standards, soit la radiographie postéro-antérieure à 0° et la radiographie latérale. Premièrement, une détection semi-automatique des côtes est effectuée sur la radiographie postéro-antérieure, et une identification interactive d'un ensemble de points sur les côtes visibles est faite sur la radiographie latérale. Ensuite, une reconstruction automatique des côtes est réalisée par une mise en correspondance de ces points sur deux vues. De plus, les côtes non détectées sur la radiographie latérale, qui sont en général les côtes de la partie supérieure de la cage thoracique, sont prédites à partir des côtes inférieures, ce qui constitue l'originalité de cette méthode. Finalement, une surface est générée le long de la ligne médiane reconstruite. Cette surface représente l'épaisseur réelle de la côte, et sert de point d'ancrage pour les tissus mous lors des simulations de la correction du rachis. Une validation rigoureuse fut menée, grâce à un modèle de cage thoracique synthétique représentant une vraie cage thoracique en position debout. Cela n'a jamais été fait auparavant. Trois sévérités de déformations ont été considérées, soit 0°, 20° et 40° d'angle de Cobb thoracique droite. Dans chacun des cas, le modèle a été numérisé à l'aide d'un appareil de mesure tridimensionnelle et des radiographies ont été acquises. Des reconstructions effectuées par la nouvelle méthode et l'ancienne méthode de reconstruction de la cage thoracique utilisée à l'hôpital Sainte-Justine ont été comparées aux numérisations du modèle synthétique. La méthode proposée offre une erreur moyenne de 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) et 8,27 mm (±5,16 mm), comparativement à l'ancienne méthode qui offre une erreur moyenne de 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) et 14,05 mm (±9,59 mm), respectivement pour les configurations à 0°, 20° et 40°. De plus, des simulations ont été effectuées sur trois patients afin de déterminer si la cage thoracique obtenue par la nouvelle méthode améliore les résultats. Les résultats obtenus ont clairement démontré qu'une reconstruction précise de la cage thoracique améliore significativement les résultats de simulation. La principale contribution de ce projet réside dans le fait que la méthode proposée permet de faire une évaluation clinique fiable des déformations de la cage thoracique. L'amélioration de la précision de la reconstruction 3D et la personnalisation plus complète de la cage thoracique permettent non seulement cela, mais ouvrent aussi la voie à différentes opportunités. Notamment, la simulation de la chirurgie des côtes, la reconstruction des poumons ou même l'étude de la corrélation entre la structure osseuse interne et la surface externe du tronc bénéficierait grandement d'une cage thoracique personnalisée. Tous ces projets, globalement, contribuent à diminuer la quantité de radiation infligée aux patients, car ceux-ci auront de moins en moins à subir de radiographies afin de faire un suivi clinique.----------Abstract To evaluate scoliosis severity in the clinical setting, clinicians often refer to the Cobb angle. Unfortunately, this angle only represents a curve on a plane. Furthermore, the deformities sustained by the rib cage are not always correlated to those of the spine. Many techniques have been proposed to help the clinician by providing information about the three dimensional configuration of the rib cage. However, he must sometimes only correct the spine and rib humps may persist. A simulator predicting the effects of a spine correction on the external appearance of the trunk would be useful to plan the surgery. However, three dimensional rib cage models used are not fully personalised to each patient, thus limiting the precision of the results of the simulation. The goal of this project is to develop a new method for personalised 3D reconstruction of the rib cage, in order to improve the results of simulating the propagation of the spinal correction to the external trunk. Current methods of 3D reconstruction of the rib cage are not precise and have not been validated with models that faithfully represent a rib cage in standing position. In the literature, most reference models are obtained by computed tomography (CT) scans, which are acquired in supine position. Such models are thus inappropriate for a clinical assessment of the 3D reconstruction methods based on radiographs acquired in standing position. Furthermore, the existing methods only provide the reconstruction of the rib midlines or complete 3D rib cage models obtained by deforming generic models. These reconstructions are not adequate in the context of personalized simulation, where the ultimate goal is to plan the clinical strategy providing the best correction both of the internal structures and of the external appearance of the trunk, the latter being the main factor contributing to patient satisfaction. We have proposed a new method in order to address these problems. This method is based only on the two standards radiographs, i.e. the postero-anterior view at 0° and the lateral view. First of all, a semi-automatic detection of the ribs is done on the postero-anterior radiograph, followed by an interactive identification of a set of points on the visible ribs in the lateral view. Then, an automatic reconstruction of the ribs is performed by means of stereo matching points. The originality of this method is that it can predict the undetected ribs in the lateral view, which are mostly those of the upper section of the rib cage, based on the reconstruction of the lower ribs. Finally, a surface is generated along the rib's 3D midline. This surface represents the real thickness of the rib and serves as an anchor for the attachment of soft tissues during the simulation of the spine correction's effect on the whole trunk. A thorough validation was conducted with the help of a synthetic rib cage model. This model represents a real rib cage in standing position . This kind of validation has never been done before. Three cases of scoliotic deformation were considered, namely 0°, 20° and 40° of right-thoracic Cobb angle. In each case, the model was digitized with a coordinate measuring machine and radiographed. 3D reconstructions of the rib cage obtained by the proposed method and the existing method used at Sainte-Justine Hospital were compared to the digitized model. The new method yields mean errors of 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) and 8,27 mm (±5,16 mm), compared to the old method which yields mean errors of 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) and 14,05 mm (±9,59 mm), for the 0°, 20° and 40° deformations, respectively. Furthermore, simulations were performed on three patients to determine if the rib cage produced by the new method improves the results of the simulator. The results clearly demonstrated that a precise reconstruction of the rib cage significantly improves the simulation results. The main contribution of this project lies in the fact that the new method allows a reliable clinical assessment of rib cage deformities. In addition, the enhanced precision of the 3D reconstruction and the more complete personalization of the rib cage model open up new possibilities. In particular, the simulation of other surgical interventions such as rib resection and lung reconstruction, as well as studies on the relationship between internal bone structures and external trunk shape, could all benefit from a personalized rib cage. Globally, all these projects contribute to reducing the amount of radiation inflicted to patients because less radiographs will be required in order to make a clinical follow up

    Forging a Stable Relationship?: Bridging the Law and Forensic Science Divide in the Academy

    Get PDF
    The marriage of law and science has most often been represented as discordant. While the law/science divide meme is hardly novel, concerns over the potentially deleterious coupling within the criminal justice system may have reached fever pitch. There is a growing chorus of disapproval addressed to ‘forensic science’, accompanied by the denigration of legal professionals for being unable or unwilling to forge a symbiotic relationship with forensic scientists. The 2009 National Academy of Sciences Report on forensic science heralds the latest call for greater collaboration between ‘law’ and ‘science’, particularly in Higher Education Institutions (HEIs) yet little reaction has been apparent amid law and science faculties. To investigate the potential for interdisciplinary cooperation, the authors received funding for a project: ‘Lowering the Drawbridges: Forensic and Legal Education in the 21st Century’, hoping to stimulate both law and forensic science educators to seek mutually beneficial solutions to common educational problems and build vital connections in the academy. A workshop held in the UK, attended by academics and practitioners from scientific, policing, and legal backgrounds marked the commencement of the project. This paper outlines some of the workshop conclusions to elucidate areas of dissent and consensus, and where further dialogue is required, but aims to strike a note of optimism that the ‘cultural divide’ should not be taken to be so wide as to be beyond the legal and forensic science academy to bridge. The authors seek to demonstrate that legal and forensic science educators can work cooperatively to respond to critics and forge new paths in learning and teaching, creating an opportunity to take stock and enrich our discipline as well as answer critics. As Latham (2010:34) exhorts, we are not interested in turning lawyers into scientists and vice versa, but building a foundation upon which they can build during their professional lives: “Instead of melding the two cultures, we need to establish conditions of cooperation, mutual respect, and mutual reliance between them.” Law and forensic science educators should, and can assist with the building of a mutual understanding between forensic scientists and legal professionals, a significant step on the road to answering calls for the professions to minimise some of the risks associated with the use of forensic science in the criminal process. REFERENCES Latham, S.R. 2010, ‘Law between the cultures: C.P.Snow’s The Two Cultures and the problem of scientific illiteracy in law’ 32 Technology in Society, 31-34. KEYWORDS forensic science education legal education law/science divid
    corecore