136,512 research outputs found

    New Computational Upper Bounds for Ramsey Numbers R(3,k)

    Get PDF
    Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: R(3,10) <= 42, R(3,11) <= 50, R(3,13) <= 68, R(3,14) <= 77, R(3,15) <= 87, and R(3,16) <= 98. All of them are improvements by one over the previously best known bounds. Let e(3,k,n) denote the minimum number of edges in any triangle-free graph on n vertices without independent sets of order k. The new upper bounds on R(3,k) are obtained by completing the computation of the exact values of e(3,k,n) for all n with k <= 9 and for all n <= 33 for k = 10, and by establishing new lower bounds on e(3,k,n) for most of the open cases for 10 <= k <= 15. The enumeration of all graphs witnessing the values of e(3,k,n) is completed for all cases with k <= 9. We prove that the known critical graph for R(3,9) on 35 vertices is unique up to isomorphism. For the case of R(3,10), first we establish that R(3,10) = 43 if and only if e(3,10,42) = 189, or equivalently, that if R(3,10) = 43 then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that R(3,10) <= 42.Comment: 28 pages (includes a lot of tables); added improved lower bound for R(3,11); added some note

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length ℓ\ell affects the number of colours required as d→∞d\to\infty. For vertex-colouring and t≥1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length ℓ≥3t\ell \ge 3t if tt is odd or by excluding an even cycle length ℓ≥2t+2\ell \ge 2t+2. For edge-colouring and t≥2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length ℓ≥2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t≥2t\ge 2, neither of the above statements are possible for other parity combinations of ℓ\ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Edge-coloring via fixable subgraphs

    Full text link
    Many graph coloring proofs proceed by showing that a minimal counterexample to the theorem being proved cannot contain certain configurations, and then showing that each graph under consideration contains at least one such configuration; these configurations are called \emph{reducible} for that theorem. (A \emph{configuration} is a subgraph HH, along with specified degrees dG(v)d_G(v) in the original graph GG for each vertex of HH.) We give a general framework for showing that configurations are reducible for edge-coloring. A particular form of reducibility, called \emph{fixability}, can be considered without reference to a containing graph. This has two key benefits: (i) we can now formulate necessary conditions for fixability, and (ii) the problem of fixability is easy for a computer to solve. The necessary condition of \emph{superabundance} is sufficient for multistars and we conjecture that it is sufficient for trees as well, which would generalize the powerful technique of Tashkinov trees. Via computer, we can generate thousands of reducible configurations, but we have short proofs for only a small fraction of these. The computer can write \LaTeX\ code for its proofs, but they are only marginally enlightening and can run thousands of pages long. We give examples of how to use some of these reducible configurations to prove conjectures on edge-coloring for small maximum degree. Our aims in writing this paper are (i) to provide a common context for a variety of reducible configurations for edge-coloring and (ii) to spur development of methods for humans to understand what the computer already knows.Comment: 18 pages, 8 figures; 12-page appendix with 39 figure

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, Pk∼k−γP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ∼2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure
    • …
    corecore