73,344 research outputs found

    Sample- and segment-size specific Model Selection in Mixture Regression Analysis

    Get PDF
    As mixture regression models increasingly receive attention from both theory and practice, the question of selecting the correct number of segments gains urgency. A misspecification can lead to an under- or oversegmentation, thus resulting in flawed management decisions on customer targeting or product positioning. This paper presents the results of an extensive simulation study that examines the performance of commonly used information criteria in a mixture regression context with normal data. Unlike with previous studies, the performance is evaluated at a broad range of sample/segment size combinations being the most critical factors for the effectiveness of the criteria from both a theoretical and practical point of view. In order to assess the absolute performance of each criterion with respect to chance, the performance is reviewed against so called chance criteria, derived from discriminant analysis. The results induce recommendations on criterion selection when a certain sample size is given and help to judge what sample size is needed in order to guarantee an accurate decision based on a certain criterion respectively

    (Dt,C) Optimal run orders.

    Get PDF
    Cost considerations have rarely been taken into account in optimum design theory. A few authors consider measurement costs, i.e. the costs associated with a particular factor level combination. A second cost approach results from the fact that it is often expensive to change factor levels from one observation to another. We refer to these costs as transition costs. In view of cost minimization, one should minimize the number of factor level changes. However, there is a substantial likelihood that there is some time order dependence in the results. Consequently, when considering both time order dependence and transition costs, an optimal ordering is not easy to find. There is precious little in the literature on how to select good time order sequences for arbitrary design problems and up to now, no thorough analysis of both costs is found in the literature. For arbitrary design problems, our proposed design algorithm incorporates cost considerations in optimum design construction and enables one to compute cost-efficient run orders that are optimally balanced for time trends. The results show that cost considerations in the construction of trend-resistant run orders entail considerable reductions in the total cost of an experiment and imply a large increase in the amount of information per unit cost.Optimal; Run orders;

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404
    corecore