60 research outputs found

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Design and analysis of bending motion in single and dual chamber bellows structured soft actuators

    Get PDF
    As one of the most important characteristics of soft actuators, bending motion has been widely used in the field of soft robotics to perform different manipulation and tasks. In this study, we design silicone rubber material based soft actuators consisting of single and dual chambers, and a bellows structure. Several models of bellows soft actuators were designed, simulated and analyzed using finite element analysis (FEA) software MARC®, in order to understand the characteristics of bellows structured soft actuator with single and dual chambers and to optimize the performance of bending motion of bellows soft actuators. The results confirm that the bellows structured pneumatic soft actuator model 4 of single chamber and model 5 of dual chamber produces the best bending motion and bending angles

    Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion with One Air-Supply Tube

    Get PDF
    Soft actuators driven by pneumatic pressure are promising actuators for mechanical systems in medical, biological, agriculture, welfare fields and so on, because they can ensure high safety for fragile objects from their low mechanical impedance. In this study, a new rubber pneumatic actuator made from silicone rubber was developed. Composed of one chamber and one air-supply tube, it can generate curling motion in two directions by using positive and negative pneumatic pressure. The rubber actuator, for generating bidirectional motion, was designed to achieve an efficient shape by nonlinear finite element method analysis, and was fabricated by a molding and rubber bonding process using excimer light. The fabricated actuator was able to generate curling motion in two directions successfully. The displacement and force characteristics of the actuator were measured by using a motion capture system and a load cell. As an example application of the actuator, a robotic soft hand with three actuators was constructed and its effectiveness was confirmed by experiments

    Modeling of Soft Fiber-Reinforced Bending Actuators

    Get PDF
    published_or_final_versio

    Soft robot actuators using energy-efficient valves controlled by electropermanent magnets

    Get PDF
    This paper presents the design, fabrication, and evaluation of a novel type of valve that uses an electropermanent magnet [1]. This valve is then used to build actuators for a soft robot. The developed EPM valves require only a brief (5 ms) pulse of current to turn flow on or off for an indefinite period of time. EPMvalves are characterized and demonstrated to be well suited for the control of elastomer fluidic actuators. The valves drive the pressurization and depressurization of fluidic channels within soft actuators. Furthermore, the forward locomotion of a soft, multi-actuator rolling robot is driven by EPM valves. The small size and energy-efficiency of EPM valves may make them valuable in soft mobile robot applications.United States. Defense Advanced Research Projects Agency (Grant W911NF-08-C-0060)United States. Defense Advanced Research Projects Agency (Grant W911NF-08-1-0228)Boeing Compan

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    A Novel Concept for Safe, Stiffness-Controllable Robot Links

    Get PDF
    The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility and variable stiffness in robotics have been recognised as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behaviour either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach which focuses on creating stiffness controllability for the linkages between the robot joints. This paper proposes a replacement for the traditionally rigid robot link – the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh-silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This paper investigates a number of our link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved - up to 40 N reaction force along the axial direction, for a 25 mm diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages for robot manipulators exhibits the beam-like behaviour of traditional rigid links when fully pressurised and significantly reduced stiffness at low pressure. The proposed concept has the potential to easily create safe robots, augmenting traditional robot designs
    • …
    corecore