7,995 research outputs found

    Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units

    Full text link
    I introduce a new code for fast calculation of the Lomb-Scargle periodogram, that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a high-end GPU it is faster by a factor approaching thirty. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities; and Monte-Carlo simulation of periodogram statistical properties.Comment: Accepted by ApJ. Accompanying program source (updated since acceptance) can be downloaded from http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.g

    A Power-Aware Framework for Executing Streaming Programs on Networks-on-Chip

    Get PDF
    Nilesh Karavadara, Simon Folie, Michael Zolda, Vu Thien Nga Nguyen, Raimund Kirner, 'A Power-Aware Framework for Executing Streaming Programs on Networks-on-Chip'. Paper presented at the Int'l Workshop on Performance, Power and Predictability of Many-Core Embedded Systems (3PMCES'14), Dresden, Germany, 24-28 March 2014.Software developers are discovering that practices which have successfully served single-core platforms for decades do no longer work for multi-cores. Stream processing is a parallel execution model that is well-suited for architectures with multiple computational elements that are connected by a network. We propose a power-aware streaming execution layer for network-on-chip architectures that addresses the energy constraints of embedded devices. Our proof-of-concept implementation targets the Intel SCC processor, which connects 48 cores via a network-on- chip. We motivate our design decisions and describe the status of our implementation

    LIKWID: Lightweight Performance Tools

    Full text link
    Exploiting the performance of today's microprocessors requires intimate knowledge of the microarchitecture as well as an awareness of the ever-growing complexity in thread and cache topology. LIKWID is a set of command line utilities that addresses four key problems: Probing the thread and cache topology of a shared-memory node, enforcing thread-core affinity on a program, measuring performance counter metrics, and microbenchmarking for reliable upper performance bounds. Moreover, it includes a mpirun wrapper allowing for portable thread-core affinity in MPI and hybrid MPI/threaded applications. To demonstrate the capabilities of the tool set we show the influence of thread affinity on performance using the well-known OpenMP STREAM triad benchmark, use hardware counter tools to study the performance of a stencil code, and finally show how to detect bandwidth problems on ccNUMA-based compute nodes.Comment: 12 page

    OpenForensics:a digital forensics GPU pattern matching approach for the 21st century

    Get PDF
    Pattern matching is a crucial component employed in many digital forensic (DF) analysis techniques, such as file-carving. The capacity of storage available on modern consumer devices has increased substantially in the past century, making pattern matching approaches of current generation DF tools increasingly ineffective in performing timely analyses on data seized in a DF investigation. As pattern matching is a trivally parallelisable problem, general purpose programming on graphic processing units (GPGPU) is a natural fit for this problem. This paper presents a pattern matching framework - OpenForensics - that demonstrates substantial performance improvements from the use of modern parallelisable algorithms and graphic processing units (GPUs) to search for patterns within forensic images and local storage devices

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202
    corecore