31,348 research outputs found

    Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

    Get PDF
    We consider PML, the probabilistic version of Hennessy-Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism.We provide two different interpretations for PML by considering nondeterministic and probabilistic processes as models, and we exhibit two new bisimulation-based equivalences that are in full agreement with those interpretations. Our new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead in agreement with two versions of Hennessy-Milner logic extended with an additional probabilistic operator interpreted over state distributions rather than over individual states. Thus, our new interpretations of PML and the corresponding new bisimilarities offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or are mixing nondeterminism and probability in an alternating/non-alternating way

    Logical Characterizations of Behavioral Relations on Transition Systems of Probability Distributions

    Get PDF
    Probabilistic nondeterministic processes are commonly modeled as probabilistic LTSs (PLTSs). A number of logical characterizations of the main behavioral relations on PLTSs have been studied. In particular, Parma and Segala [2007] and Hermanns et al. [2011] define a probabilistic Hennessy-Milner logic interpreted over probability distributions, whose corresponding logical equivalence/preorder when restricted to Dirac distributions coincide with standard bisimulation/simulation between the states of a PLTS. This result is here extended by studying the full logical equivalence/preorder between (possibly non-Dirac) distributions in terms of a notion of bisimulation/simulation defined on a LTS whose states are distributions (dLTS). We show that the well-known spectrum of behavioral relations on nonprobabilistic LTSs as well as their corresponding logical characterizations in terms of Hennessy-Milner logic scales to the probabilistic setting when considering dLTSs

    How could a rational analysis model explain?

    Get PDF
    Rational analysis is an influential but contested account of how probabilistic modeling can be used to construct non-mechanistic but self-standing explanatory models of the mind. In this paper, I disentangle and assess several possible explanatory contributions which could be attributed to rational analysis. Although existing models suffer from evidential problems that question their explanatory power, I argue that rational analysis modeling can complement mechanistic theorizing by providing models of environmental affordances

    Scalable Emulation of Sign-Problemāˆ’-Free Hamiltonians with Room Temperature p-bits

    Full text link
    The growing field of quantum computing is based on the concept of a q-bit which is a delicate superposition of 0 and 1, requiring cryogenic temperatures for its physical realization along with challenging coherent coupling techniques for entangling them. By contrast, a probabilistic bit or a p-bit is a robust classical entity that fluctuates between 0 and 1, and can be implemented at room temperature using present-day technology. Here, we show that a probabilistic coprocessor built out of room temperature p-bits can be used to accelerate simulations of a special class of quantum many-body systems that are sign-problemāˆ’-free or stoquastic, leveraging the well-known Suzuki-Trotter decomposition that maps a dd-dimensional quantum many body Hamiltonian to a dd+1-dimensional classical Hamiltonian. This mapping allows an efficient emulation of a quantum system by classical computers and is commonly used in software to perform Quantum Monte Carlo (QMC) algorithms. By contrast, we show that a compact, embedded MTJ-based coprocessor can serve as a highly efficient hardware-accelerator for such QMC algorithms providing several orders of magnitude improvement in speed compared to optimized CPU implementations. Using realistic device-level SPICE simulations we demonstrate that the correct quantum correlations can be obtained using a classical p-circuit built with existing technology and operating at room temperature. The proposed coprocessor can serve as a tool to study stoquastic quantum many-body systems, overcoming challenges associated with physical quantum annealers.Comment: Fixed minor typos and expanded Appendi

    Expressing Bayesian Fusion as a Product of Distributions: Application to Randomized Hough Transform

    Get PDF
    Data fusion is a common issue of mobile robotics, computer assisted medical diagnosis or behavioral control of simulated character for instance. However data sources are often noisy, opinion for experts are not known with absolute precision, and motor commands do not act in the same exact manner on the environment. In these cases, classic logic fails to manage efficiently the fusion process. Confronting different knowledge in an uncertain environment can therefore be adequately formalized in the bayesian framework. Besides, bayesian fusion can be expensive in terms of memory usage and processing time. This paper precisely aims at expressing any bayesian fusion process as a product of probability distributions in order to reduce its complexity. We first study both direct and inverse fusion schemes. We show that contrary to direct models, inverse local models need a specific prior in order to allow the fusion to be computed as a product. We therefore propose to add a consistency variable to each local model and we show that these additional variables allow the use of a product of the local distributions in order to compute the global probability distribution over the fused variable. Finally, we take the example of the Randomized Hough Transform. We rewrite it in the bayesian framework, considering that it is a fusion process to extract lines from couples of dots in a picture. As expected, we can find back the expression of the Randomized Hough Transform from the literature with the appropriate assumptions

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models
    • ā€¦
    corecore