1,547 research outputs found

    Mobiles and wearables: owner biometrics and authentication

    Get PDF
    We discuss the design and development of HCI models for authentication based on gait and gesture that can be supported by mobile and wearable equipment. The paper proposes to use such biometric behavioral traits for partially transparent and continuous authentication by means of behavioral patterns. © 2016 Copyright held by the owner/author(s)

    Human Gait Database for Normal Walk Collected by Smart Phone Accelerometer

    Full text link
    The goal of this study is to introduce a comprehensive gait database of 93 human subjects who walked between two endpoints during two different sessions and record their gait data using two smartphones, one was attached to the right thigh and another one on the left side of the waist. This data is collected with the intention to be utilized by a deep learning-based method which requires enough time points. The metadata including age, gender, smoking, daily exercise time, height, and weight of an individual is recorded. this data set is publicly available

    Sequential Keystroke Behavioral Biometrics for Mobile User Identification via Multi-view Deep Learning

    Full text link
    With the rapid growth in smartphone usage, more organizations begin to focus on providing better services for mobile users. User identification can help these organizations to identify their customers and then cater services that have been customized for them. Currently, the use of cookies is the most common form to identify users. However, cookies are not easily transportable (e.g., when a user uses a different login account, cookies do not follow the user). This limitation motivates the need to use behavior biometric for user identification. In this paper, we propose DEEPSERVICE, a new technique that can identify mobile users based on user's keystroke information captured by a special keyboard or web browser. Our evaluation results indicate that DEEPSERVICE is highly accurate in identifying mobile users (over 93% accuracy). The technique is also efficient and only takes less than 1 ms to perform identification.Comment: 2017 Joint European Conference on Machine Learning and Knowledge Discovery in Database

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission
    • …
    corecore