627 research outputs found

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Using ALOS PALSAR derived high - resolution DInSAR to detect slow - moving landslides in tropical forest: Cameron Highlands, Malaysia

    Get PDF
    Landslide is one of the natural hazards that pose maximum threat for human lives and property in mountainous regions. Mitigation and prediction of this phenomenon can be done through the detection of landslide-susceptible areas. Therefore, an appropriate landslide analysis is needed in order to map and consequently understand the characteristic of this disaster. One of the recent popular remote sensing techniques in deformation analysis is the differential interferometric synthetic aperture radar which is popularly known as DInSAR. Due to the mass vegetation condition in Malaysia, a long-wavelength synthetic aperture radar (∼24 cm) is required in order to be able to penetrate through the forests and reach the bare land. For that reason, ALOS PALSAR HH imagery was used in this study to derive a deformation map of the Gunung Pass area located in the tropical forest of the Cameron Highlands, Malaysia. In this study, the ascending orbit ALOS PALSAR images were acquired in September 2008, January 2009 and December 2009. Subsequently the displacement measurements of the study site (Gunung Pass) were calculated. The accuracy of the result was evaluated through its comparison with ground truth data using the R2 and root mean square error (RMSE) methods. The resulted deformation map showed the landslide locations in the study area from interpretation of the results with 0.84 R2 and 0.151 RMSE. The DInSAR precision was 11.8 cm which proved the efficiency of the proposed method in detecting landslides in a tropical country like Malaysia. It is highly recommended to use the proposed method for any other deformation studies

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    Interferometric Synthetic Aperture RADAR and Radargrammetry towards the Categorization of Building Changes

    Get PDF
    The purpose of this work is the investigation of SAR techniques relying on multi image acquisition for fully automatic and rapid change detection analysis at building level. In particular, the benefits and limitations of a complementary use of two specific SAR techniques, InSAR and radargrammetry, in an emergency context are examined in term of quickness, globality and accuracy. The analysis is performed using spaceborne SAR data

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Model order selection in multi-baseline interferometric radar systems

    Get PDF
    Synthetic aperture radar interferometry (InSAR) is a powerful technique to derive three-dimensional terrain images. Interest is growing in exploiting the advanced multi-baseline mode of InSAR to solve layover effects from complex orography, which generate reception of unexpected multicomponent signals that degrade imagery of both terrain radar reflectivity and height. This work addresses a few problems related to the implementation into interferometric processing of nonlinear algorithms for estimating the number of signal components, including a system trade-off analysis. Performance of various eigenvalues-based information-theoretic criteria (ITC) algorithms is numerically investigated under some realistic conditions. In particular, speckle effects from surface and volume scattering are taken into account as multiplicative noise in the signal model. Robustness to leakage of signal power into the noise eigenvalues and operation with a small number of looks are investigated. The issue of baseline optimization for detection is also addressed. The use of diagonally loaded ITC methods is then proposed as a tool for robust operation in the presence of speckle decorrelation. Finally, case studies of a nonuniform array are studied and recommendations for a proper combination of ITC methods and system configuration are given
    corecore