4,231 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    The Unsupervised Acquisition of a Lexicon from Continuous Speech

    Get PDF
    We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.Comment: 27 page technical repor

    A Proposal on Discovering Causal Structures inTechnical Systems by Means of Interventions

    Get PDF
    Causal Discovery has become an area of high interest for researchers. It haslead to great advances in medicine, in the social sciences and in genetics. Butup til now, it is hardly used to identify causal relations in technical systems.This paper presents the basic building blocks for in-depth research. This paperreviews established causal discovery methods and causal models. In contrast toexisting surveys of this domain, we focus on the causal discovery methods usinginterventions. Based thereon, we propose the idea of a promising interventionaldiscovery approach for technical systems. It takes advantage of not only direct,but also indirect causal relationships, which might improve the learning processof causal structures
    corecore