1,844 research outputs found

    A Bayesian Nonparametric Markovian Model for Nonstationary Time Series

    Full text link
    Stationary time series models built from parametric distributions are, in general, limited in scope due to the assumptions imposed on the residual distribution and autoregression relationship. We present a modeling approach for univariate time series data, which makes no assumptions of stationarity, and can accommodate complex dynamics and capture nonstandard distributions. The model for the transition density arises from the conditional distribution implied by a Bayesian nonparametric mixture of bivariate normals. This implies a flexible autoregressive form for the conditional transition density, defining a time-homogeneous, nonstationary, Markovian model for real-valued data indexed in discrete-time. To obtain a more computationally tractable algorithm for posterior inference, we utilize a square-root-free Cholesky decomposition of the mixture kernel covariance matrix. Results from simulated data suggest the model is able to recover challenging transition and predictive densities. We also illustrate the model on time intervals between eruptions of the Old Faithful geyser. Extensions to accommodate higher order structure and to develop a state-space model are also discussed

    A Simple Class of Bayesian Nonparametric Autoregression Models

    Get PDF
    We introduce a model for a time series of continuous outcomes, that can be expressed as fully nonparametric regression or density regression on lagged terms. The model is based on a dependent Dirichlet process prior on a family of random probability measures indexed by the lagged covariates. The approach is also extended to sequences of binary responses. We discuss implementation and applications of the models to a sequence of waiting times between eruptions of the Old Faithful Geyser, and to a dataset consisting of sequences of recurrence indicators for tumors in the bladder of several patients.MIUR 2008MK3AFZFONDECYT 1100010NIH/NCI R01CA075981Mathematic

    Bayesian Nonparametric Calibration and Combination of Predictive Distributions

    Get PDF
    We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan, R. and Gneiting, T. (2010) and Gneiting, T. and Ranjan, R. (2013), we use infinite beta mixtures for the calibration. The proposed Bayesian nonparametric approach takes advantage of the flexibility of Dirichlet process mixtures to achieve any continuous deformation of linearly combined predictive distributions. The inference procedure is based on Gibbs sampling and allows accounting for uncertainty in the number of mixture components, mixture weights, and calibration parameters. The weak posterior consistency of the Bayesian nonparametric calibration is provided under suitable conditions for unknown true density. We study the methodology in simulation examples with fat tails and multimodal densities and apply it to density forecasts of daily S&P returns and daily maximum wind speed at the Frankfurt airport.Comment: arXiv admin note: text overlap with arXiv:1305.2026 by other author

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Dynamic density estimation with diffusive Dirichlet mixtures

    Get PDF
    We introduce a new class of nonparametric prior distributions on the space of continuously varying densities, induced by Dirichlet process mixtures which diffuse in time. These select time-indexed random functions without jumps, whose sections are continuous or discrete distributions depending on the choice of kernel. The construction exploits the widely used stick-breaking representation of the Dirichlet process and induces the time dependence by replacing the stick-breaking components with one-dimensional Wright-Fisher diffusions. These features combine appealing properties of the model, inherited from the Wright-Fisher diffusions and the Dirichlet mixture structure, with great flexibility and tractability for posterior computation. The construction can be easily extended to multi-parameter GEM marginal states, which include, for example, the Pitman--Yor process. A full inferential strategy is detailed and illustrated on simulated and real data.Comment: Published at http://dx.doi.org/10.3150/14-BEJ681 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Evolutionary Inference for Function-valued Traits: Gaussian Process Regression on Phylogenies

    Full text link
    Biological data objects often have both of the following features: (i) they are functions rather than single numbers or vectors, and (ii) they are correlated due to phylogenetic relationships. In this paper we give a flexible statistical model for such data, by combining assumptions from phylogenetics with Gaussian processes. We describe its use as a nonparametric Bayesian prior distribution, both for prediction (placing posterior distributions on ancestral functions) and model selection (comparing rates of evolution across a phylogeny, or identifying the most likely phylogenies consistent with the observed data). Our work is integrative, extending the popular phylogenetic Brownian Motion and Ornstein-Uhlenbeck models to functional data and Bayesian inference, and extending Gaussian Process regression to phylogenies. We provide a brief illustration of the application of our method.Comment: 7 pages, 1 figur

    Nonparametric tests of the Markov hypothesis in continuous-time models

    Full text link
    We propose several statistics to test the Markov hypothesis for β\beta-mixing stationary processes sampled at discrete time intervals. Our tests are based on the Chapman--Kolmogorov equation. We establish the asymptotic null distributions of the proposed test statistics, showing that Wilks's phenomenon holds. We compute the power of the test and provide simulations to investigate the finite sample performance of the test statistics when the null model is a diffusion process, with alternatives consisting of models with a stochastic mean reversion level, stochastic volatility and jumps.Comment: Published in at http://dx.doi.org/10.1214/09-AOS763 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Time-series Modelling, Stationarity and Bayesian Nonparametric Methods

    Get PDF
    In this paper we introduce two general non-parametric first-order stationary time-series models for which marginal (invariant) and transition distributions are expressed as infinite-dimensional mixtures. That feature makes them the first Bayesian stationary fully non-parametric models developed so far. We draw on the discussion of using stationary models in practice, as a motivation, and advocate the view that flexible (non-parametric) stationary models might be a source for reliable inferences and predictions. It will be noticed that our models adequately fit in the Bayesian inference framework due to a suitable representation theorem. A stationary scale-mixture model is developed as a particular case along with a computational strategy for posterior inference and predictions. The usefulness of that model is illustrated with the analysis of Euro/USD exchange rate log-returns.Stationarity, Markov processes, Dynamic mixture models, Random probability measures, Conditional random probability measures, Latent processes.
    • …
    corecore