7,058 research outputs found

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    Computational aspects of DNA mixture analysis

    Full text link
    Statistical analysis of DNA mixtures is known to pose computational challenges due to the enormous state space of possible DNA profiles. We propose a Bayesian network representation for genotypes, allowing computations to be performed locally involving only a few alleles at each step. In addition, we describe a general method for computing the expectation of a product of discrete random variables using auxiliary variables and probability propagation in a Bayesian network, which in combination with the genotype network allows efficient computation of the likelihood function and various other quantities relevant to the inference. Lastly, we introduce a set of diagnostic tools for assessing the adequacy of the model for describing a particular dataset

    Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

    Get PDF
    Bayesian calibration of computer models tunes unknown input parameters by comparing outputs with observations. For model outputs that are distributed over space, this becomes computationally expensive because of the output size. To overcome this challenge, we employ a basis representation of the model outputs and observations: we match these decompositions to carry out the calibration efficiently. In the second step, we incorporate the non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the calibration. We insert two integrated nested Laplace approximation-stochastic partial differential equation parameters into the calibration. A synthetic example and a climate model illustration highlight the benefits of our approach
    corecore