1,809 research outputs found

    Connect the dots: sketching out microbiome interactions through networking approaches

    Get PDF
    Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function. In this review, we discuss the latest advances in microbiome networking analysis, including methods for constructing and analyzing microbiome networks, and provide a case study on how to use these tools. These analyses typically involve constructing a network that represents interactions among microbial taxa or functional units, such as genes or metabolic pathways. Such networks can be based on a variety of data sources, including 16S rRNA sequencing, metagenomic sequencing, and metabolomics data. Once constructed, these networks can be analyzed to identify key nodes or modules important for the stability and function of the microbiome. By providing insights into essential ecological features of microbial communities, microbiome networking analysis has the potential to transform our understanding of the microbial world and its impact on human health and the environment

    Partially-Latent Class Models (pLCM) for Case-Control Studies of Childhood Pneumonia Etiology

    Get PDF
    In population studies on the etiology of disease, one goal is the estimation of the fraction of cases attributable to each of several causes. For example, pneumonia is a clinical diagnosis of lung infection that may be caused by viral, bacterial, fungal, or other pathogens. The study of pneumonia etiology is challenging because directly sampling from the lung to identify the etiologic pathogen is not standard clinical practice in most settings. Instead, measurements from multiple peripheral specimens are made. This paper introduces the statistical methodology designed for estimating the population etiology distribution and the individual etiology probabilities in the Pneumonia Etiology Research for Child Health (PERCH) study of 9; 500 children for 7 sites around the world. We formulate the scientific problem in statistical terms as estimating the mixing weights and latent class indicators under a partially-latent class model (pLCM) that combines heterogeneous measurements with different error rates obtained from a case-control study. We introduce the pLCM as an extension of the latent class model. We also introduce graphical displays of the population data and inferred latent-class frequencies. The methods are tested with simulated data, and then applied to PERCH data. The paper closes with a brief description of extensions of the pLCM to the regression setting and to the case where conditional independence among the measures is relaxed.Comment: 25 pages, 4 figures, 1 supplementary materia

    Statistical Methods for Integrative Analysis, Subgroup Identification, and Variable Selection Using Cancer Genomic Data

    Get PDF
    In recent years, comprehensive cancer genomics platform, such as The Cancer Genome Atlas (TCGA), provides access to an enormous amount of high throughput genomic datasets for each patient, including gene expression, DNA copy number alteration, DNA methylation, and somatic mutation. Currently most existing analysis approaches focused only on gene-level analysis and suffered from limited interpretability and low reproducibility of findings. Additionally, with increasing availability of the modern compositional data including immune cellular fraction data and high-dimensional zero-inflated microbiome data, variable selection techniques for compositional data became of great interest because they allow inference of key immune cell types (immunology data) and key microbial species (microbiome data) associated with development and progression of various diseases. In the first dissertation aim, we address these challenges by developing a Bayesian sparse latent factor model for pathway-guided integrative genomic data analysis. Specifically, we constructed a unified framework to simultaneously identify cancer patient subgroups (clustering) and key molecular markers (variable selection) based on the joint analysis of continuous, binary and count data. In addition, we applied Polya-Gamma mixtures of normal for binary and count data to promote an exact and fully automatic posterior sampling. Moreover, pathway information was used to improve accuracy and robustness in identification of cancer patient subgroups and key molecular features. In the second dissertation aim, we developed the R package InGRiD , a comprehensive software for pathway-guided integrative genomic data analysis. We further implemented the statistical model developed in Aim 1 and provide it as a part of this software. The third dissertation aim exploits variable selection in compositional data analysis with application to immunology data and microbiome data. Specifically, we identified key immune cell types by applying a stepwise pairwise log-ratio procedure to the immune cellular fractions data, while selecting key species in the microbiome data by using zero-inflated Wilcoxon rank sum test. These approaches consider key components specific to these data types, such as compositionality (i.e., sum-to-one), zero inflation, and high dimensionality, among others. The proposed methods were developed and evaluated on: 1) large scale, high dimensional, and multi-modal datasets from the TCGA database, including gene expression, DNA copy number alteration, and somatic mutation data (Aim 1); 2) cellular fraction data induced from Colorectal Adenocarcinoma TCGA Pan-Cancer study (Aim 3); 3) high dimensional zero-inflated microbiome data from studies of colorectal cancer (Aim 3)

    Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases

    Get PDF
    While metagenomic sequencing has become the tool of preference to study host-associated microbial communities, downstream analyses and clinical interpretation of microbiome data remains challenging due to the sparsity and compositionality of sequence matrices. Here, we evaluate both computational and experimental approaches proposed to mitigate the impact of these outstanding issues. Generating fecal metagenomes drawn from simulated microbial communities, we benchmark the performance of thirteen commonly used analytical approaches in terms of diversity estimation, identification of taxon-taxon associations, and assessment of taxon-metadata correlations under the challenge of varying microbial ecosystem loads. We find quantitative approaches including experimental procedures to incorporate microbial load variation in downstream analyses to perform significantly better than computational strategies designed to mitigate data compositionality and sparsity, not only improving the identification of true positive associations, but also reducing false positive detection. When analyzing simulated scenarios of low microbial load dysbiosis as observed in inflammatory pathologies, quantitative methods correcting for sampling depth show higher precision compared to uncorrected scaling. Overall, our findings advocate for a wider adoption of experimental quantitative approaches in microbiome research, yet also suggest preferred transformations for specific cases where determination of microbial load of samples is not feasible

    Metatranscriptome of human faecal microbial communities in a cohort of adult men

    Get PDF
    The gut microbiome is intimately related to human health, but it is not yet known which functional activities are driven by specific microorganisms\u27 ecological configurations or transcription. We report a large-scale investigation of 372 human faecal metatranscriptomes and 929 metagenomes from a subset of 308 men in the Health Professionals Follow-Up Study. We identified a metatranscriptomic \u27core\u27 universally transcribed over time and across participants, often by different microorganisms. In contrast to the housekeeping functions enriched in this core, a \u27variable\u27 metatranscriptome included specialized pathways that were differentially expressed both across participants and among microorganisms. Finally, longitudinal metagenomic profiles allowed ecological interaction network reconstruction, which remained stable over the six-month timespan, as did strain tracking within and between participants. These results provide an initial characterization of human faecal microbial ecology into core, subject-specific, microorganism-specific and temporally variable transcription, and they differentiate metagenomically versus metatranscriptomically informative aspects of the human faecal microbiome

    Inferring Correlation Networks from Genomic Survey Data

    Get PDF
    High-throughput sequencing based techniques, such as 16S rRNA gene profiling, have the potential to elucidate the complex inner workings of natural microbial communities - be they from the world's oceans or the human gut. A key step in exploring such data is the identification of dependencies between members of these communities, which is commonly achieved by correlation analysis. However, it has been known since the days of Karl Pearson that the analysis of the type of data generated by such techniques (referred to as compositional data) can produce unreliable results since the observed data take the form of relative fractions of genes or species, rather than their absolute abundances. Using simulated and real data from the Human Microbiome Project, we show that such compositional effects can be widespread and severe: in some real data sets many of the correlations among taxa can be artifactual, and true correlations may even appear with opposite sign. Additionally, we show that community diversity is the key factor that modulates the acuteness of such compositional effects, and develop a new approach, called SparCC (available at https://bitbucket.org/yonatanf/sparcc), which is capable of estimating correlation values from compositional data. To illustrate a potential application of SparCC, we infer a rich ecological network connecting hundreds of interacting species across 18 sites on the human body. Using the SparCC network as a reference, we estimated that the standard approach yields 3 spurious species-species interactions for each true interaction and misses 60% of the true interactions in the human microbiome data, and, as predicted, most of the erroneous links are found in the samples with the lowest diversity.United States. Dept. of Energy (Contract DE-AC02-05CH11231
    • …
    corecore