665 research outputs found

    Unsupervised cryo-EM data clustering through adaptively constrained K-means algorithm

    Full text link
    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.Comment: 35 pages, 14 figure

    Determination of protein structural ensembles using cryo-electron microscopy.

    Get PDF
    Achieving a comprehensive understanding of the behaviour of proteins is greatly facilitated by the knowledge of their structures, thermodynamics and dynamics. All this information can be provided in an effective manner in terms of structural ensembles. A structural ensemble can be obtained by determining the structures, populations and interconversion rates for all the main states that a protein can occupy. To reach this goal, integrative methods that combine experimental and computational approaches provide powerful tools. Here we focus on cryo-electron microscopy, which has become over recent years an invaluable resource to bridge the gap from order to disorder in structural biology. In this review, we provide a perspective of the current challenges and opportunities in determining protein structural ensembles using integrative approaches that can combine cryo-electron microscopy data with other available sources of information, along with an overview of the tools available to the community

    Bayesian inference of initial models in cryo-electron microscopy using pseudo-atoms.

    Get PDF
    Single-particle cryo-electron microscopy is widely used to study the structure of macromolecular assemblies. Tens of thousands of noisy two-dimensional images of the macromolecular assembly viewed from different directions are used to infer its three-dimensional structure. The first step is to estimate a low-resolution initial model and initial image orientations. This is a challenging global optimization problem with many unknowns, including an unknown orientation for each two-dimensional image. Obtaining a good initial model is crucial for the success of the subsequent refinement step. We introduce a probabilistic algorithm for estimating an initial model. The algorithm is fast, has very few algorithmic parameters, and yields information about the precision of estimated model parameters in addition to the parameters themselves. Our algorithm uses a pseudo-atomic model to represent the low-resolution three-dimensional structure, with isotropic Gaussian components as moveable pseudo-atoms. This leads to a significant reduction in the number of parameters needed to represent the three-dimensional structure, and a simplified way of computing two-dimensional projections. It also contributes to the speed of the algorithm. We combine the estimation of the unknown three-dimensional structure and image orientations in a Bayesian framework. This ensures that there are very few parameters to set, and specifies how to combine different types of prior information about the structure with the given data in a systematic way. To estimate the model parameters we use Markov chain Monte Carlo sampling. The advantage is that instead of just obtaining point estimates of model parameters, we obtain an ensemble of models revealing the precision of the estimated parameters. We demonstrate the algorithm on both simulated and real data

    Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead

    Get PDF
    Electron cryomicroscopy (cryo-EM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize molecules such as ribosomes, viruses, and ion channels, for example. Obtaining structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryo-EM a scientific rebirth. Because of imaging improvements, image processing and analysis of the resultant images have increased the resolution such that molecular structures can be resolved at the atomic level. Cryo-EM is ripe with stimulating image processing challenges. In this article, we will touch on the most essential in order to build an accurate structural three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. With this review, however, we will highlight fresh approaches from new and varied angles for each image processing sub-problem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking. Keywords: Cryo-electron microscopy, Single Particle Analysis, Image processing algorithms

    Geometric analysis of macromolecule organization within cryo-electron tomograms

    No full text
    Cryo-electron tomography (CET) provides unprecedented views into the native cellular environment at molecular resolution. While subtomogram analysis yields high-resolution native structures of molecular complexes, it also determines the precise positions and orientations of these macromolecules within the cell. Analyzing the geometric relationships between adjacent macromolecules can offer structural insights into molecular interactions and identify supramolecular ensembles. However, computation..

    A Bayesian approach to initial model inference in cryo-electron microscopy

    Get PDF
    Eine Hauptanwendung der Einzelpartikel-Analyse in der Kryo-Elektronenmikroskopie ist die Charakterisierung der dreidimensionalen Struktur makromolekularer Komplexe. Dazu werden zehntausende Bilder verwendet, die verrauschte zweidimensionale Projektionen des Partikels zeigen. Im ersten Schritt werden ein niedrig aufgelöstetes Anfangsmodell rekonstruiert sowie die unbekannten Bildorientierungen geschätzt. Dies ist ein schwieriges inverses Problem mit vielen Unbekannten, einschließlich einer unbekannten Orientierung für jedes Projektionsbild. Ein gutes Anfangsmodell ist entscheidend für den Erfolg des anschließenden Verfeinerungsschrittes. Meine Dissertation stellt zwei neue Algorithmen zur Rekonstruktion eines Anfangsmodells in der Kryo-Elektronenmikroskopie vor, welche auf einer groben Darstellung der Elektronendichte basieren. Die beiden wesentlichen Beiträge meiner Arbeit sind zum einen das Modell, welches die Elektronendichte darstellt, und zum anderen die neuen Rekonstruktionsalgorithmen. Der erste Hauptbeitrag liegt in der Verwendung Gaußscher Mischverteilungen zur Darstellung von Elektrondichten im Rekonstruktionsschritt. Ich verwende kugelförmige Mischungskomponenten mit unbekannten Positionen, Ausdehnungen und Gewichtungen. Diese Darstellung hat viele Vorteile im Vergleich zu einer gitterbasierten Elektronendichte, die andere Rekonstruktionsalgorithmen üblicherweise verwenden. Zum Beispiel benötigt sie wesentlich weniger Parameter, was zu schnelleren und robusteren Algorithmen führt. Der zweite Hauptbeitrag ist die Entwicklung von Markovketten-Monte-Carlo-Verfahren im Rahmen eines Bayes'schen Ansatzes zur Schätzung der Modellparameter. Der erste Algorithmus kann aus dem Gibbs-Sampling, welches Gaußsche Mischverteilungen an Punktwolken anpasst, abgeleitet werden. Dieser Algorithmus wird hier so erweitert, dass er auch mit Bildern, Projektionen sowie unbekannten Drehungen und Verschiebungen funktioniert. Der zweite Algorithmus wählt einen anderen Zugang. Das Vorwärtsmodell nimmt nun Gaußsche Fehler an. Sampling-Algorithmen wie Hamiltonian Monte Carlo (HMC) erlauben es, die Positionen der Mischungskomponenten und die Bildorientierungen zu schätzen. Meine Dissertation zeigt umfassende numerische Experimente mit simulierten und echten Daten, die die vorgestellten Algorithmen in der Praxis testen und mit anderen Rekonstruktionsverfahren vergleichen.Single-particle cryo-electron microscopy (cryo-EM) is widely used to study the structure of macromolecular assemblies. Tens of thousands of noisy two-dimensional images of the macromolecular assembly viewed from different directions are used to infer its three-dimensional structure. The first step is to estimate a low-resolution initial model and initial image orientations. This is a challenging ill-posed inverse problem with many unknowns, including an unknown orientation for each two-dimensional image. Obtaining a good initial model is crucial for the success of the subsequent refinement step. In this thesis we introduce new algorithms for estimating an initial model in cryo-EM, based on a coarse representation of the electron density. The contribution of the thesis can be divided into these two parts: one relating to the model, and the other to the algorithms. The first main contribution of the thesis is using Gaussian mixture models to represent electron densities in reconstruction algorithms. We use spherical (isotropic) mixture components with unknown positions, size and weights. We show that using this representation offers many advantages over the traditional grid-based representation used by other reconstruction algorithms. There is for example a significant reduction in the number of parameters needed to represent the three-dimensional electron density, which leads to fast and robust algorithms. The second main contribution of the thesis is developing Markov Chain Monte Carlo (MCMC) algorithms within a Bayesian framework for estimating the parameters of the mixture models. The first algorithm is a Gibbs sampling algorithm. It is derived by starting with the standard Gibbs sampling algorithm for fitting Gaussian mixture models to point clouds, and extending it to work with images, to handle projections from three dimensions to two dimensions, and to account for unknown rotations and translations. The second algorithm takes a different approach. It modifies the forward model to work with Gaussian noise, and uses sampling algorithms such as Hamiltonian Monte Carlo (HMC) to sample the positions of the mixture components and the image orientations. We provide extensive tests of our algorithms using simulated and experimental data, and compare them to other initial model algorithms

    Mapping the conformations of biological assemblies

    Full text link
    Mapping conformational heterogeneity of macromolecules presents a formidable challenge to X-ray crystallography and cryo-electron microscopy, which often presume its absence. This has severely limited our knowledge of the conformations assumed by biological systems and their role in biological function, even though they are known to be important. We propose a new approach to determining to high resolution the three-dimensional conformations of biological entities such as molecules, macromolecular assemblies, and ultimately cells, with existing and emerging experimental techniques. This approach may also enable one to circumvent current limits due to radiation damage and solution purification.Comment: 14 pages, 6 figure

    Hierarchical autoclassification of cryo-EM samples and macromolecular energy landscape determination

    Get PDF
    Background and objective: Cryo-electron microscopy using single particle analysis is a powerful technique for obtaining 3D reconstructions of macromolecules in near native conditions. One of its major advances is its capacity to reveal conformations of dynamic molecular complexes. Most popular and successful current approaches to analyzing heterogeneous complexes are founded on Bayesian inference. However, these 3D classification methods require the tuning of specific parameters by the user and the use of complicated 3D re-classification procedures for samples affected by extensive heterogeneity. Thus, the success of these approaches highly depends on the user experience. We introduce a robust approach to identify many different conformations presented in a cryo-EM dataset based on Bayesian inference through Relion classification methods that does not require tuning of parameters and reclassification strategies. Methods: The algorithm allows both 2D and 3D classification and is based on a hierarchical clustering approach that runs automatically without requiring typical inputs, such as the number of conformations present in the dataset or the required classification iterations. This approach is applied to robustly determine the energy landscapes of macromolecules. Results: We tested the performance of the methods proposed here using four different datasets, comprising structurally homogeneous and highly heterogeneous cases. In all cases, the approach provided excellent results. The routines are publicly available as part of the CryoMethods plugin included in the Scipion package. Conclusions: Our results show that the proposed method can be used to align and classify homogeneous and heterogeneous datasets without requiring previous alignment information or any prior knowledge about the number of co-existing conformations. The approach can be used for both 2D and 3D autoclassification and only requires an initial volume. In addition, the approach is robust to the "attractor" problem providing many different conformations/views for samples affected by extensive heterogeneity. The obtained 3D classes can render high resolution 3D structures, while the obtained energy landscapes can be used to determine structural trajectories
    corecore