584 research outputs found

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Human detection, tracking and segmentation from low-level to high-level vision

    Get PDF
    The goal of this research is to detect, segment and track a human body as well as estimate its limb configuration from cluttered background. These are fundamental research issues that have attracted intensive attention in the computer vision community because of their wide applications. Meanwhile they also remain to be ones of the most challenging research issues largely due to the ubiquitous visual ambiguities in images/videos. The other challenging factor is the ill-posed nature of the problems. Inspired by the recent findings in cognitive psychology, we adopt several biologically plausible approaches to attack these challenging problems. This dissertation provides a comprehensive study of human detection, tracking and segmentation that covers several research issues ranging from low, middle, and high-level vision.In low-level vision, we investigate video segmentation where the main challenge is the non-convex classification problem, and we develop a cascaded multi-layer segmentation framework where no-convex classification problems are addressed in a split-and-merge paradigm by combining merits of both statistical modeling and graph theory.In middle-level vision, we propose a segmentation based hypothesis-and-test paradigm to achieve joint localization and segmentation that exploits the complementary nature of region-based and edge-based shape priors. In addition, we integrate both priors into a Graph-cut framework to improve the segmentation results.In high-level vision, our research has two related parts. First, we propose a hybrid body representation that embraces part-whole shape priors and part-based spatial prior for integrated pose recognition, localization and segmentation in a given image. Second, we further combine spatial and temporal priors in an integrated online learning and inference framework, where body parts can be detected, localized and segmented simultaneously from a video sequence. Both of them are supported by previous low-level and mid-level vision tasks.Experimental results show that the proposed algorithms can achieve accurate and robust tracking, localization and segmentation results for different walking subjects with significant appearance and motion variability and under cluttered background

    Unsupervised Texture Segmentation

    Get PDF

    Image Segmentation of Bacterial Cells in Biofilms

    Get PDF
    Bacterial biofilms are three-dimensional cell communities that live embedded in a self-produced extracellular matrix. Due to the protective properties of the dense coexistence of microorganisms, single bacteria inside the communities are hard to eradicate by antibacterial agents and bacteriophages. This increased resilience gives rise to severe problems in medical and technological settings. To fight the bacterial cells, an in-detail understanding of the underlying mechanisms of biofilm formation and development is required. Due to spatio-temporal variances in environmental conditions inside a single biofilm, the mechanisms can only be investigated by probing single-cells at different locations over time. Currently, the mechanistic information is primarily encoded in volumetric image data gathered with confocal fluorescence microscopy. To quantify features of the single-cell behaviour, single objects need to be detected. This identification of objects inside biofilm image data is called segmentation and is a key step for the understanding of the biological processes inside biofilms. In the first part of this work, a user-friendly computer program is presented which simplifies the analysis of bacterial biofilms. It provides a comprehensive set of tools to segment, analyse, and visualize fluorescent microscopy data without writing a single line of analysis code. This allows for faster feedback loops between experiment and analysis, and allows fast insights into the gathered data. The single-cell segmentation accuracy of a recent segmentation algorithm is discussed in detail. In this discussion, points for improvements are identified and a new optimized segmentation approach presented. The improved algorithm achieves superior segmentation accuracy on bacterial biofilms when compared to the current state-of-the-art algorithms. Finally, the possibility of deep learning-based end-to-end segmentation of biofilm data is investigated. A method for the quick generation of training data is presented and the results of two single-cell segmentation approaches for eukaryotic cells are adapted for the segmentation of bacterial biofilm segmentation.Bakterielle Biofilme sind drei-dimensionale Zellcluster, welche ihre eigene Matrix produzieren. Die selbst-produzierte Matrix bietet den Zellen einen gemeinschaftlichen Schutz vor äußeren Stressfaktoren. Diese Stressfaktoren können abiotischer Natur sein wie z.B. Temperatur- und Nährstoff\- schwankungen, oder aber auch biotische Faktoren wie z.B. Antibiotikabehandlung oder Bakteriophageninfektionen. Dies führt dazu, dass einzelne Zelle innerhalb der mikrobiologischen Gemeinschaften eine erhöhte Widerstandsfähigkeit aufweisen und eine große Herausforderung für Medizin und technische Anwendungen darstellen. Um Biofilme wirksam zu bekämpfen, muss man die dem Wachstum und Entwicklung zugrundeliegenden Mechanismen entschlüsseln. Aufgrund der hohen Zelldichte innerhalb der Gemeinschaften sind die Mechanismen nicht räumlich und zeitlich invariant, sondern hängen z.B. von Metabolit-, Nährstoff- und Sauerstoffgradienten ab. Daher ist es für die Beschreibung unabdingbar Beobachtungen auf Einzelzellebene durchzuführen. Für die nicht-invasive Untersuchung von einzelnen Zellen innerhalb eines Biofilms ist man auf konfokale Fluoreszenzmikroskopie angewiesen. Um aus den gesammelten, drei-dimensionalen Bilddaten Zelleigenschaften zu extrahieren, ist die Erkennung von den jeweiligen Zellen erforderlich. Besonders die digitale Rekonstruktion der Zellmorphologie spielt dabei eine große Rolle. Diese erhält man über die Segmentierung der Bilddaten. Dabei werden einzelne Bildelemente den abgebildeten Objekten zugeordnet. Damit lassen sich die einzelnen Objekte voneinander unterscheiden und deren Eigenschaften extrahieren. Im ersten Teil dieser Arbeit wird ein benutzerfreundliches Computerprogramm vorgestellt, welches die Segmentierung und Analyse von Fluoreszenzmikroskopiedaten wesentlich vereinfacht. Es stellt eine umfangreiche Auswahl an traditionellen Segmentieralgorithmen, Parameterberechnungen und Visualisierungsmöglichkeiten zur Verfügung. Alle Funktionen sind ohne Programmierkenntnisse zugänglich, sodass sie einer großen Gruppe von Benutzern zur Verfügung stehen. Die implementierten Funktionen ermöglichen es die Zeit zwischen durchgeführtem Experiment und vollendeter Datenanalyse signifikant zu verkürzen. Durch eine schnelle Abfolge von stetig angepassten Experimenten können in kurzer Zeit schnell wissenschaftliche Einblicke in Biofilme gewonnen werden.\\ Als Ergänzung zu den bestehenden Verfahren zur Einzelzellsegmentierung in Biofilmen, wird eine Verbesserung vorgestellt, welche die Genauigkeit von bisherigen Filter-basierten Algorithmen übertrifft und einen weiteren Schritt in Richtung von zeitlich und räumlich aufgelöster Einzelzellverfolgung innerhalb bakteriellen Biofilme darstellt. Abschließend wird die Möglichkeit der Anwendung von Deep Learning Algorithmen für die Segmentierung in Biofilmen evaluiert. Dazu wird eine Methode vorgestellt welche den Annotationsaufwand von Trainingsdaten im Vergleich zu einer vollständig manuellen Annotation drastisch verkürzt. Die erstellten Daten werden für das Training von Algorithmen eingesetzt und die Genauigkeit der Segmentierung an experimentellen Daten untersucht

    Hierarchical Visual Content Modelling and Query based on Trees

    Get PDF
    In recent years, such vast archives of video information have become available that human annotation of content is no longer feasible; automation of video content analysis is therefore highly desirable. The recognition of semantic content in images is a problem that relies on prior knowledge and learnt information and that, to date, has only been partially solved. Salient analysis, on the other hand, is statistically based and highlights regions that are distinct from their surroundings, while also being scalable and repeatable. The arrangement of salient information into hierarchical tree structures in the spatial and temporal domains forms an important step to bridge the semantic salient gap. Salient regions are identified using region analysis, rank ordered and documented in a tree for further analysis. A structure of this kind contains all the information in the original video and forms an intermediary between video processing and video understanding, transforming video analysis to a syntactic database analysis problem. This contribution demonstrates the formulation of spatio-temporal salient trees the syntax to index them, and provides an interface for higher level cognition in machine vision

    Video object segmentation.

    Get PDF
    Wei Wei.Thesis submitted in: December 2005.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 112-122).Abstracts in English and Chinese.Abstract --- p.IIList of Abbreviations --- p.IVChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview of Content-based Video Standard --- p.1Chapter 1.2 --- Video Object Segmentation --- p.4Chapter 1.2.1 --- Video Object Plane (VOP) --- p.4Chapter 1.2.2 --- Object Segmentation --- p.5Chapter 1.3 --- Problems of Video Object Segmentation --- p.6Chapter 1.4 --- Objective of the research work --- p.7Chapter 1.5 --- Organization of This Thesis --- p.8Chapter 1.6 --- Notes on Publication --- p.8Chapter Chapter 2 --- Literature Review --- p.10Chapter 2.1 --- What is segmentation? --- p.10Chapter 2.1.1 --- Manual Segmentation --- p.10Chapter 2.1.2 --- Automatic Segmentation --- p.11Chapter 2.1.3 --- Semi-automatic segmentation --- p.12Chapter 2.2 --- Segmentation Strategy --- p.14Chapter 2.3 --- Segmentation of Moving Objects --- p.17Chapter 2.3.1 --- Motion --- p.18Chapter 2.3.2 --- Motion Field Representation --- p.19Chapter 2.3.3 --- Video Object Segmentation --- p.25Chapter 2.4 --- Summary --- p.35Chapter Chapter 3 --- Automatic Video Object Segmentation Algorithm --- p.37Chapter 3.1 --- Spatial Segmentation --- p.38Chapter 3.1.1 --- k:-Medians Clustering Algorithm --- p.39Chapter 3.1.2 --- Cluster Number Estimation --- p.41Chapter 3.1.2 --- Region Merging --- p.46Chapter 3.2 --- Foreground Detection --- p.48Chapter 3.2.1 --- Global Motion Estimation --- p.49Chapter 3.2.2 --- Detection of Moving Objects --- p.50Chapter 3.3 --- Object Tracking and Extracting --- p.50Chapter 3.3.1 --- Binary Model Tracking --- p.51Chapter 3.3.1.2 --- Initial Model Extraction --- p.53Chapter 3.3.2 --- Region Descriptor Tracking --- p.59Chapter 3.4 --- Results and Discussions --- p.65Chapter 3.4.1 --- Objective Evaluation --- p.65Chapter 3.4.2 --- Subjective Evaluation --- p.66Chapter 3.5 --- Conclusion --- p.74Chapter Chapter 4 --- Disparity Estimation and its Application in Video Object Segmentation --- p.76Chapter 4.1 --- Disparity Estimation --- p.79Chapter 4.1.1. --- Seed Selection --- p.80Chapter 4.1.2. --- Edge-based Matching by Propagation --- p.82Chapter 4.2 --- Remedy Matching Sparseness by Interpolation --- p.84Chapter 4.2 --- Disparity Applications in Video Conference Segmentation --- p.92Chapter 4.3 --- Conclusion --- p.106Chapter Chapter 5 --- Conclusion and Future Work --- p.108Chapter 5.1 --- Conclusion and Contribution --- p.108Chapter 5.2 --- Future work --- p.109Reference --- p.11

    Object tracking using variational optic flow methods

    Get PDF
    We propose an algorithm for tracking of objects in video sequences by computing a spatiotemporal optical flow field, based on the method of Brox et al., and the application of a spatiotemporal watershed segmentation algorithm with region merging on the previously obtained vector field.Es wird ein Algorithmus zum Verfolgen von Objekten in Videosequenzen durch die Berechnung eines zeitlich-räumlichen optischen Flussfeldes präsentiert, basierend auf der Methode von Brox et al., und der darauffolgenden Anwendung eines zeitlich-räumlichen Wasserscheiden-Segmentierungsalgorithmus mit Region Merging auf dem durch den opti- schen Fluss erhaltenen Vektorfeld
    corecore