11,574 research outputs found

    Implementing Loss Distribution Approach for Operational Risk

    Full text link
    To quantify the operational risk capital charge under the current regulatory framework for banking supervision, referred to as Basel II, many banks adopt the Loss Distribution Approach. There are many modeling issues that should be resolved to use the approach in practice. In this paper we review the quantitative methods suggested in literature for implementation of the approach. In particular, the use of the Bayesian inference method that allows to take expert judgement and parameter uncertainty into account, modeling dependence and inclusion of insurance are discussed

    Loss Distribution Approach for Operational Risk Capital Modelling under Basel II: Combining Different Data Sources for Risk Estimation

    Full text link
    The management of operational risk in the banking industry has undergone significant changes over the last decade due to substantial changes in operational risk environment. Globalization, deregulation, the use of complex financial products and changes in information technology have resulted in exposure to new risks very different from market and credit risks. In response, Basel Committee for banking Supervision has developed a regulatory framework, referred to as Basel II, that introduced operational risk category and corresponding capital requirements. Over the past five years, major banks in most parts of the world have received accreditation under the Basel II Advanced Measurement Approach (AMA) by adopting the loss distribution approach (LDA) despite there being a number of unresolved methodological challenges in its implementation. Different approaches and methods are still under hot debate. In this paper, we review methods proposed in the literature for combining different data sources (internal data, external data and scenario analysis) which is one of the regulatory requirement for AMA

    A Bayesian Networks Approach to Operational Risk

    Full text link
    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank using only internal loss data, and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters. The algorithm has been validated on synthetic time series. It should be stressed that the practical implementation of the proposed algorithm has a small impact on the organizational structure of a bank and requires an investment in human resources limited to the computational area

    Bayesian networks for enterprise risk assessment

    Get PDF
    According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the particular case in which only prior probabilities of node states and marginal correlations between nodes are available, and when the variables have only two states

    A Bayesian copula model for stochastic claims reserving

    Get PDF
    We present a full Bayesian model for assessing the reserve requirement of multiline Non-Life insurance companies. Bayesian models for claims reserving allow to account for expert knowledge in the evaluation of Outstanding Loss Liabilities, allowing the use of additional information at a low cost. This paper combines a standard Bayesian approach for the estimation of marginal distribution for the single Lines of Business for a Non-Life insurance company and a Bayesian copula procedure for the estimation of aggregate reserves. The model we present allows to "mix" own-assessments of dependence between LoBs at a company level and market-wide estimates provided by regulators. We illustrate results for the single lines of business and we compare standard copula aggregation for different copula choices and the Bayesian copula approach.stochastic claims reserving; bayesian copulas; solvency capital requirement; loss reserving; bayesian methods

    Bayesian Methods for Measuring Operational Risk

    Get PDF
    The likely imposition by regulators of minimum standards for capital to cover 'other risks' has been a driving force behind the recent interest in operational risk management. Much discussion has been centered on the form of capital charges for other risks. At the same time major banks are developing models to improve internal management of operational processes, new insurance products for operational risks are being designed and there is growing interest in alternative risk transfer, through OR-linked products.

    The Present, Future and Imperfect of Financial Risk Management

    Get PDF
    Current research on financial risk management applications of econometrics centres on the accurate assessment of individual market and credit risks with relatively little theoretical or applied econometric research on other types of risk, aggregation risk, data incompleteness and optimal risk control. We argue that consideration of the model risk arising from crude aggregation rules and inadequate data could lead to a new class of reduced form Bayesian risk assessment models. Logically, these models should be set within a common factor framework that allows proper risk aggregation methods to be developed. We explain how such a framework could also provide the essential links between risk control, risk assessments and the optimal allocation of resources.Financial risk assessment; risk control, RAROC, economic capital; regulatory capital; optimal allocation of resources

    Fast calibrated additive quantile regression

    Full text link
    We propose a novel framework for fitting additive quantile regression models, which provides well calibrated inference about the conditional quantiles and fast automatic estimation of the smoothing parameters, for model structures as diverse as those usable with distributional GAMs, while maintaining equivalent numerical efficiency and stability. The proposed methods are at once statistically rigorous and computationally efficient, because they are based on the general belief updating framework of Bissiri et al. (2016) to loss based inference, but compute by adapting the stable fitting methods of Wood et al. (2016). We show how the pinball loss is statistically suboptimal relative to a novel smooth generalisation, which also gives access to fast estimation methods. Further, we provide a novel calibration method for efficiently selecting the 'learning rate' balancing the loss with the smoothing priors during inference, thereby obtaining reliable quantile uncertainty estimates. Our work was motivated by a probabilistic electricity load forecasting application, used here to demonstrate the proposed approach. The methods described here are implemented by the qgam R package, available on the Comprehensive R Archive Network (CRAN)
    corecore