3,982 research outputs found

    Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study

    Get PDF

    Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation

    Get PDF
    Automatic segmentation of brain tumors has the potential to enable volumetric measures and high-throughput analysis in the clinical setting. Reaching this potential seems almost achieved, considering the steady increase in segmentation accuracy. However, despite segmentation accuracy, the current methods still do not meet the robustness levels required for patient-centered clinical use. In this regard, uncertainty estimates are a promising direction to improve the robustness of automated segmentation systems. Different uncertainty estimation methods have been proposed, but little is known about their usefulness and limitations for brain tumor segmentation. In this study, we present an analysis of the most commonly used uncertainty estimation methods in regards to benefits and challenges for brain tumor segmentation. We evaluated their quality in terms of calibration, segmentation error localization, and segmentation failure detection. Our results show that the uncertainty methods are typically well-calibrated when evaluated at the dataset level. Evaluated at the subject level, we found notable miscalibrations and limited segmentation error localization (e.g., for correcting segmentations), which hinder the direct use of the voxel-wise uncertainties. Nevertheless, voxel-wise uncertainty showed value to detect failed segmentations when uncertainty estimates are aggregated at the subject level. Therefore, we suggest a careful usage of voxel-wise uncertainty measures and highlight the importance of developing solutions that address the subject-level requirements on calibration and segmentation error localization

    Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis

    Full text link
    The full acceptance of Deep Learning (DL) models in the clinical field is rather low with respect to the quantity of high-performing solutions reported in the literature. Particularly, end users are reluctant to rely on the rough predictions of DL models. Uncertainty quantification methods have been proposed in the literature as a potential response to reduce the rough decision provided by the DL black box and thus increase the interpretability and the acceptability of the result by the final user. In this review, we propose an overview of the existing methods to quantify uncertainty associated to DL predictions. We focus on applications to medical image analysis, which present specific challenges due to the high dimensionality of images and their quality variability, as well as constraints associated to real-life clinical routine. We then discuss the evaluation protocols to validate the relevance of uncertainty estimates. Finally, we highlight the open challenges of uncertainty quantification in the medical field

    Improving Calibration and Out-of-Distribution Detection in Medical Image Segmentation with Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models. In this study, we address some of the main unresolved issues regarding these models. Specifically, training of these models on small medical image datasets is still challenging, with many studies promoting techniques such as transfer learning. Moreover, these models are infamous for producing over-confident predictions and for failing silently when presented with out-of-distribution (OOD) data at test time. In this paper, we advocate for multi-task learning, i.e., training a single model on several different datasets, spanning several different organs of interest and different imaging modalities. We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions than dedicated models trained separately on each dataset. Our experiments show that multi-task learning can outperform transfer learning in medical image segmentation tasks. For detecting OOD data, we propose a method based on spectral analysis of CNN feature maps. We show that different datasets, representing different imaging modalities and/or different organs of interest, have distinct spectral signatures, which can be used to identify whether or not a test image is similar to the images used to train a model. We show that this approach is far more accurate than OOD detection based on prediction uncertainty. The methods proposed in this paper contribute significantly to improving the accuracy and reliability of CNN-based medical image segmentation models
    • …
    corecore