9,703 research outputs found

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Knowledge Tracing: A Review of Available Technologies

    Get PDF
    As a student modeling technique, knowledge tracing is widely used by various intelligent tutoring systems to infer and trace the individual’s knowledge state during the learning process. In recent years, various models were proposed to get accurate and easy-to-interpret results. To make sense of the wide Knowledge tracing (KT) modeling landscape, this paper conducts a systematic review to provide a detailed and nuanced discussion of relevant KT techniques from the perspective of assumptions, data, and algorithms. The results show that most existing KT models consider only a fragment of the assumptions that relate to the knowledge components within items and student’s cognitive process. Almost all types of KT models take “quize data” as input, although it is insufficient to reflect a clear picture of students’ learning process. Dynamic Bayesian network, logistic regression and deep learning are the main algorithms used by various knowledge tracing models. Some open issues are identified based on the analytics of the reviewed works and discussed potential future research directions

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Multi-agent knowledge integration mechanism using particle swarm optimization

    Get PDF
    This is the post-print version of the final paper published in Technological Forecasting and Social Change. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Unstructured group decision-making is burdened with several central difficulties: unifying the knowledge of multiple experts in an unbiased manner and computational inefficiencies. In addition, a proper means of storing such unified knowledge for later use has not yet been established. Storage difficulties stem from of the integration of the logic underlying multiple experts' decision-making processes and the structured quantification of the impact of each opinion on the final product. To address these difficulties, this paper proposes a novel approach called the multiple agent-based knowledge integration mechanism (MAKIM), in which a fuzzy cognitive map (FCM) is used as a knowledge representation and storage vehicle. In this approach, we use particle swarm optimization (PSO) to adjust causal relationships and causality coefficients from the perspective of global optimization. Once an optimized FCM is constructed an agent based model (ABM) is applied to the inference of the FCM to solve real world problem. The final aggregate knowledge is stored in FCM form and is used to produce proper inference results for other target problems. To test the validity of our approach, we applied MAKIM to a real-world group decision-making problem, an IT project risk assessment, and found MAKIM to be statistically robust.Ministry of Education, Science and Technology (Korea

    SMILE: smart monitoring intelligent learning engine. An ontology-based context-aware system for supporting patients subjected to severe emergencies

    Get PDF
    Remote healthcare has made a revolution in the healthcare domain. However, an important problem this field is facing is supporting patients who are subjected to severe emergencies (as heart attacks) to be both monitored and protected while being at home. In this paper, we present a conceptual framework with the main objectives of: 1) emergency handling through monitoring patients, detecting emergencies and insuring fast emergency responses; 2) preventing an emergency from happening in the first place through protecting patients by organising their lifestyles and habits. To achieve these objectives, we propose a layered middleware. Our context model combines two modelling methods: probabilistic modelling to capture uncertain information and ontology to ease knowledge sharing and reuse. In addition, our system uses a two-level reasoning approach (ontology-based reasoning and Bayesian-based reasoning) to manage both certain and uncertain contextual parameters in an adaptive manner. Bayesian network is learned from ontology. Moreover, to ensure a more sophisticated decision-making for service presentation, influence diagram and analytic hierarchy process are used along with regular probabilistic rules (confidence level) and basic semantic logic rules

    EDM 2011: 4th international conference on educational data mining : Eindhoven, July 6-8, 2011 : proceedings

    Get PDF

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference
    • …
    corecore