6,273 research outputs found

    A Bayesian method for fitting parametric and nonparametric models to noisy data

    Full text link

    Bayesian astrostatistics: a backward look to the future

    Full text link
    This perspective chapter briefly surveys: (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics, exemplified in part by presentations at the first ISI invited session on astrostatistics, commemorated in this volume. It closes with an intentionally provocative recommendation for astronomical survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations: that astronomers cease producing catalogs of estimated fluxes and other source properties from surveys. Instead, summaries of likelihood functions (or marginal likelihood functions) for source properties should be reported (not posterior probability density functions), including nontrivial summaries (not simply upper limits) for candidate objects that do not pass traditional detection thresholds.Comment: 27 pp, 4 figures. A lightly revised version of a chapter in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistics. Version 2 has minor clarifications and an additional referenc

    On the Design of LQR Kernels for Efficient Controller Learning

    Full text link
    Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.Comment: 8 pages, 5 figures, to appear in 56th IEEE Conference on Decision and Control (CDC 2017

    Nonparametric Reconstruction of the Dark Energy Equation of State

    Full text link
    A basic aim of ongoing and upcoming cosmological surveys is to unravel the mystery of dark energy. In the absence of a compelling theory to test, a natural approach is to better characterize the properties of dark energy in search of clues that can lead to a more fundamental understanding. One way to view this characterization is the improved determination of the redshift-dependence of the dark energy equation of state parameter, w(z). To do this requires a robust and bias-free method for reconstructing w(z) from data that does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new nonparametric reconstruction method that solves for w(z) as a statistical inverse problem, based on a Gaussian Process representation. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demonstrate the power of the method on different sets of simulated supernova data; the approach can be easily extended to include diverse cosmological probes.Comment: 16 pages, 11 figures, accepted for publication in Physical Review
    corecore