96 research outputs found

    INTERROGATION OF SPENT NUCLEAR FUEL CASKS USING COSMIC-RAY MUON COMPUTED TOMOGRAPHY

    Get PDF
    Properly accounting and safeguarding spent nuclear fuel are key components in the International Atomic Energy Agency’s mission of non-proliferation. Currently, no instruments are deployed that are able to verify the spent nuclear fuel contents of dry storage casks. Cosmic-ray muons provide an ideal probe for the heavily shielded casks due to their ability to penetrate thick, dense materials. Coulombic scattering of the muons, to first order, is proportional to the Z2/A of the material; this makes it especially sensitive to actinides, such as uranium and plutonium. The combination of these traits allows muons to be used to image and verify the contents of a sealed cask in situ. Here the analysis of the first muon scattering measurements of spent nuclear fuel dry casks is presented, which show a 2.3 σ confidence in the identification of a missing fuel bundle. Geant4 simulations are benchmarked against measurement data and show good agreement. Using the benchmarked simulations, the first study of computed tomography using cosmic-ray muon scattering is presented and further applied to the fingerprinting and monitoring of spent nuclear fuel casks. Finally, the feasibility of using cosmic-ray muons to perform a final verification of spent nuclear fuel-prior to permanent deposition in a geological repository-is investigated

    A Statistical Framework for Improved Automatic Flaw Detection in Nondestructive Evaluation Images

    Get PDF
    Nondestructive evaluation (NDE) techniques are widely used to detect flaws in critical components of systems like aircraft engines, nuclear power plants and oil pipelines in order to prevent catastrophic events. Many modern NDE systems generate image data. In some applications an experienced inspector performs the tedious task of visually examining every image to provide accurate conclusions about the existence of flaws. This approach is labor-intensive and can cause misses due to operator ennui. Automated evaluation methods seek to eliminate human-factors variability and improve throughput. Simple methods based on peak amplitude in an image are sometimes employed and a trained-operator-controlled refinement that uses a dynamic threshold based on signal-to-noise ratio (SNR) has also been implemented. We develop an automated and optimized detection procedure that mimics these operations. The primary goal of our methodology is to reduce the number of images requiring expert visual evaluation by filtering out images that are overwhelmingly definitive on the existence or absence of a flaw. We use an appropriate model for the observed values of the SNR-detection criterion to estimate the probability of detection. Our methodology outperforms current methods in terms of its ability to detect flaws

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples

    Predicting Acute Kidney Injury at Hospital Re-entry Using High-dimensional Electronic Health Record Data

    Full text link
    Acute Kidney Injury (AKI), a sudden decline in kidney function, is associated with increased mortality, morbidity, length of stay, and hospital cost. Since AKI is sometimes preventable, there is great interest in prediction. Most existing studies consider all patients and therefore restrict to features available in the first hours of hospitalization. Here, the focus is instead on rehospitalized patients, a cohort in which rich longitudinal features from prior hospitalizations can be analyzed. Our objective is to provide a risk score directly at hospital re-entry. Gradient boosting, penalized logistic regression (with and without stability selection), and a recurrent neural network are trained on two years of adult inpatient EHR data (3,387 attributes for 34,505 patients who generated 90,013 training samples with 5,618 cases and 84,395 controls). Predictions are internally evaluated with 50 iterations of 5-fold grouped cross-validation with special emphasis on calibration, an analysis of which is performed at the patient as well as hospitalization level. Error is assessed with respect to diagnosis, race, age, gender, AKI identification method, and hospital utilization. In an additional experiment, the regularization penalty is severely increased to induce parsimony and interpretability. Predictors identified for rehospitalized patients are also reported with a special analysis of medications that might be modifiable risk factors. Insights from this study might be used to construct a predictive tool for AKI in rehospitalized patients. An accurate estimate of AKI risk at hospital entry might serve as a prior for an admitting provider or another predictive algorithm.Comment: In revisio

    Automatic image analysis of C-arm Computed Tomography images for ankle joint surgeries

    Get PDF
    Open reduction and internal fixation is a standard procedure in ankle surgery for treating a fractured fibula. Since fibula fractures are often accompanied by an injury of the syndesmosis complex, it is essential to restore the correct relative pose of the fibula relative to the adjoining tibia for the ligaments to heal. Otherwise, the patient might experience instability of the ankle leading to arthritis and ankle pain and ultimately revision surgery. Incorrect positioning referred to as malreduction of the fibula is assumed to be one of the major causes of unsuccessful ankle surgery. 3D C-arm imaging is the current standard procedure for revealing malreduction of fractures in the operating room. However, intra-operative visual inspection of the reduction result is complicated due to high inter-individual variation of the ankle anatomy and rather based on the subjective experience of the surgeon. A contralateral side comparison with the patient’s uninjured ankle is recommended but has not been integrated into clinical routine due to the high level of radiation exposure it incurs. This thesis presents the first approach towards a computer-assisted intra-operative contralateral side comparison of the ankle joint. The focus of this thesis was the design, development and validation of a software-based prototype for a fully automatic intra-operative assistance system for orthopedic surgeons. The implementation does not require an additional 3D C-arm scan of the uninjured ankle, thus reducing time consumption and cumulative radiation dose. A 3D statistical shape model (SSM) is used to reconstruct a 3D surface model from three 2D fluoroscopic projections representing the uninjured ankle. To this end, a 3D SSM segmentation is performed on the 3D image of the injured ankle to gain prior knowledge of the ankle. A 3D convolutional neural network (CNN) based initialization method was developed and its outcome was incorporated into the SSM adaption step. Segmentation quality was shown to be improved in terms of accuracy and robustness compared to the pure intensity-based SSM. This allows us to overcome the limitations of the previously proposed methods, namely inaccuracy due to metal artifacts and the lack of device-to-patient orientation of the C-arm. A 2D-CNN is employed to extract semantic knowledge from all fluoroscopic projection images. This step of the pipeline both creates features for the subsequent reconstruction and also helps to pre-initialize the 3D-SSM without user interaction. A 2D-3D multi-bone reconstruction method has been developed which uses distance maps of the 2D features for fast and accurate correspondence optimization and SSM adaption. This is the central and most crucial component of the workflow. This is the first time that a bone reconstruction method has been applied to the complex ankle joint and the first reconstruction method using CNN based segmentations as features. The reconstructed 3D-SSM of the uninjured ankle can be back-projected and visualized in a workflow-oriented manner to procure clear visualization of the region of interest, which is essential for the evaluation of the reduction result. The surgeon can thus directly compare an overlay of the contralateral ankle with the injured ankle. The developed methods were evaluated individually using data sets acquired during a cadaver study and representative clinical data acquired during fibular reduction. A hierarchical evaluation was designed to assess the inaccuracies of the system on different levels and to identify major sources of error. The overall evaluation performed on eleven challenging clinical datasets acquired for manual contralateral side comparison showed that the system is capable of accurately reconstructing 3D surface models of the uninjured ankle solely using three projection images. A mean Hausdorff distance of 1.72 mm was measured when comparing the reconstruction result to the ground truth segmentation and almost achieved the high required clinical accuracy of 1-2 mm. The overall error of the pipeline was mainly attributed to inaccuracies in the 2D-CNN segmentation. The consistency of these results requires further validation on a larger dataset. The workflow proposed in this thesis establishes the first approach to enable automatic computer-assisted contralateral side comparison in ankle surgery. The feasibility of the proposed approach was proven on a limited amount of clinical cases and has already yielded good results. The next important step is to alleviate the identified bottlenecks in the approach by providing more training data in order to further improve the accuracy. In conclusion, the new approach presented gives the chance to guide the surgeon during the reduction process, improve the surgical outcome while avoiding additional radiation exposure and reduce the number of revision surgeries in the long term

    Correlated Polarity Noise Reduction: Development, Analysis, and Application of a Novel Noise Reduction Paradigm

    Get PDF
    <p>Image noise is a pervasive problem in medical imaging. It is a property endemic to all imaging modalities and one especially familiar in those modalities that employ ionizing radiation. Statistical uncertainty is a major limiting factor in the reduction of ionizing radiation dose; patient exposure must be minimized but high image quality must also be achieved to retain the clinical utility of medical images. One way to achieve the goal of radiation dose reduction is through the use of image post processing with noise reduction algorithms. By acquiring images at lower than normal exposure followed by algorithmic noise reduction, it is possible to restore image noise to near normal levels. However, many denoising algorithms degrade the integrity of other image quality components in the process. </p><p>In this dissertation, a new noise reduction algorithm is investigated: Correlated Polarity Noise Reduction (CPNR). CPNR is a novel noise reduction technique that uses a statistical approach to reduce noise variance while maintaining excellent resolution and a "normal" noise appearance. In this work, the algorithm is developed in detail with the introduction of several methods for improving polarity estimation accuracy and maintaining the normality of the residual noise intensity distribution. Several image quality characteristics are assessed in the production of this new algorithm including its effects on residual noise texture, residual noise magnitude distribution, resolution effects, and nonlinear distortion effects. An in-depth review of current linear methods for medical imaging system resolution analysis will be presented along with several newly discovered improvements to existing techniques. This is followed by the presentation of a new paradigm for quantifying the frequency response and distortion properties of nonlinear algorithms. Finally, the new CPNR algorithm is applied to computed tomography (CT) to assess its efficacy as a dose reduction tool in 3-D imaging.</p><p>It was found that the CPNR algorithm can be used to reduce x ray dose in projection radiography by a factor of at least two without objectionable degradation of image resolution. This is comparable to other nonlinear image denoising algorithms such as the bilateral filter and wavelet denoising. However, CPNR can accomplish this level of dose reduction with few edge effects and negligible nonlinear distortion of the anatomical signal as evidenced by the newly developed nonlinear assessment paradigm. In application to multi-detector CT, XCAT simulations showed that CPNR can be used to reduce noise variance by 40% with minimal blurring of anatomical structures under a filtered back-projection reconstruction paradigm. When an apodization filter was applied, only 33% noise variance reduction was achieved, but the edge-saving qualities were largely retained. In application to cone-beam CT for daily patient positioning in radiation therapy, up to 49% noise variance reduction was achieved with as little as 1% reduction in the task transfer function measured from reconstructed data at the cutoff frequency. </p><p>This work concludes that the CPNR paradigm shows promise as a viable noise reduction tool which can be used to maintain current standards of clinical image quality at almost half of normal radiation exposure This algorithm has favorable resolution and nonlinear distortion properties as measured using a newly developed set of metrics for nonlinear algorithm resolution and distortion assessment. Simulation studies and the initial application of CPNR to cone-beam CT data reveal that CPNR may be used to reduce CT dose by 40%-49% with minimal degradation of image resolution.</p>Dissertatio
    corecore